
School of Computer Science & Engineering

Trustworthy Systems Group

The seL4 Device Driver

Framework
Lucy Parker
lucy.parker@student.unsw.edu.au

© First Last 2022, CC BY 4.0

What Is The seL4 Device Driver Framework?

Framework to provide interfaces and protocol for
writing performant device drivers as seL4 user
level programs.

1 sDDF, Oct'22 © Lucy Parker 2022 CC BY 4.0

IP
Stack

Driver

Client

File
system

Client IP
Stack

Driver File
System

Historically bug prone…

drivers have 7x bug

density than other OS

code.

Fewer privileges,

better fault

containment

More system

calls

© First Last 2022, CC BY 4.0

What Is The sDDF?

● Currently supports networking
focused system

● Implemented on top of both
CAmkES and seL4 Core
Platform

2 sDDF, Oct'22 © Lucy Parker 2022 CC BY 4.0

Model for

performant

device drivers

Asynchronous, zero

copy transport layer to

provide communication

means

© First Last 2022, CC BY 4.0

Design

• Driver model uses 3 different memory regions

3 sDDF, Oct'22

© Lucy Parker 2022 CC BY 4.0

Driver doesn’t need

access to Data

© First Last 2022, CC BY 4.0

Driver Model

● Purely reactive
● Single threaded
● Simple

● Active
… or passive?

4 sDDF, Oct'22

© Lucy Parker 2022 CC BY 4.0

Device

Control Metadata

DriverServer

© First Last 2022, CC BY 4.0

Transport Layer

• Lock free, bounded queues

• Single producer, single consumer

• 2 queues per direction

• Zero copy

5 sDDF, Oct'22

Control region DriverServer

Data region

TxA
hea

d ta

il
TxF

ta

ilhea

d

3 3
3 1

12 2 4 4

© Lucy Parker 2022 CC BY 4.0

Transmit available:

Buffers with data

available for transmit Transmit free:

Buffers free for

re-use

© First Last 2022, CC BY 4.0

Transport Layer

struct buffer_descr {
void *address;
size_t length;

}

struct ring_buffer {
uint32_t head;
uint32_t tail;
struct buffer_descr buffer[RING_SIZE];

}

6 sDDF, Oct'22

void enqueue(struct buffer_descr *buffer,
struct ring_buffer *ring) {

assert(!full(ring));
ring->buffer[ring->head % RING_SIZE] = *buffer;
barrier();
ring->head += 1;

}

struct buffer_desc* dequeue(struct ring_buffer *ring) {
assert(!empty(ring));
struct buffer_descr *buf = \

ring->buffer[ring->tail % RING_SIZE];
barrier();
ring->tail += 1;

}

Barrier ensures no writes are re-

ordered by the compiler or processor

across this point

© Lucy Parker 2022 CC BY 4.0

© First Last 2022, CC BY 4.0

Buffer Lifecycle

7 sDDF, Oct'22

TxA Ring

TxF Ring

Server

write

write

read

read

Driver

© Lucy Parker 2022 CC BY 4.0

© First Last 2022, CC BY 4.0

Transport Architecture Scales

• Components can run on separate cores

• Only MUX and driver are trusted.

8 sDDF, Oct'22

Data

DriverMUX NIC

IPClient

IPClient

© Lucy Parker 2022 CC BY 4.0

© First Last 2022, CC BY 4.0

Driver Code: Active Model

9 sDDF, Oct'22

main()
init();
notif = NULL;
while(true)

event = Signal_and_Wait(notif);
notif = NULL;
if (event & IRQ)

handle_irq();
notif = ack;
continue;

if (event & Transmit)
/* process output */
while (!full(HW_Tx) && buf = dequeue(TxA))

enqueue(buf, HW_Tx);
notif = server;

handle_irq()
while (event = clear_hw_events())

if (event & Tc)
while (!full(TxF) && buf = dequeue(HW_Tx))

/* return free Tx buffers to server */
enqueue(buf, TxF);

if (event & Ra)
while (!full(RxA) && buf = dequeue(HW_Rx))

/* process input */
enqueue(buf, RxA);

Signal(server);
while (!full(HW_Rx) && buf = dequeue(RxF))

/* return free Rx buffers */
enqueue(buf, HW_Rx);

Process multiple

packets in one

invocation

Can process multiple

IRQ events in one

invocation

Combine syscalls for

performance

© Lucy Parker 2022 CC BY 4.0

© First Last 2022, CC BY 4.0

Kernel Entries: Active Model

10 sDDF, Oct'22 © Lucy Parker 2022 CC BY 4.0

6 more than a

monolithic

kernel requires.

Compare

system call

cost vs packet

processing

cost.

Server
user

kernel

Other
user

kernel

Driver
user

kernel

© First Last 2022, CC BY 4.0

Rate Limiting

• Driver runs at highest priority to minimise round trip times

• Regardless of active/passive model, the protocols for transmit are
synchronous.

• Requires limiting CPU time by configuring budgets and periods of
scheduling contexts used by higher priority components.
And/Or limiting the queue size.

11 sDDF, Oct'22 © Lucy Parker 2022 CC BY 4.0

© First Last 2022, CC BY 4.0

Performance

12 sDDF, Oct'22 © Lucy Parker 2022 CC BY 4.0

© First Last 2022, CC BY 4.0

Set Up

• Client just echoes
packets

• IPbench sends UDP
packets and measures
throughput and latencies

• Idle thread counts cycles
to calculate CPU
Utilisation

13 sDDF, Oct'22

Idle

Idle
Built with

CAmkES and

Core Platform

Both single core

Split across 4

different

machines to

achieve

desired load

© Lucy Parker 2022 CC BY 4.0

© First Last 2022, CC BY 4.014 sDDF, Oct'22

• Simpler transport

• Adjustment of priorities

• Showed 50%

improvement!

• But could not combine

system calls easily…

Old Transport vs New: CAmkES
Networking Performance

© Lucy Parker 2022 CC BY 4.0

© First Last 2022, CC BY 4.015 sDDF, Oct'22

seL4 Core Platform vs CAmkES
Networking Performance

© Lucy Parker 2022 CC BY 4.0

• Reduced kernel entries

• Simpler platform

• Showed 70%

improvement, 150%

over old CAmkES!

• Limited drivers budget

to remove performance

collapse.

© First Last 2022, CC BY 4.016 sDDF, Oct'22 © Lucy Parker 2022 CC BY 4.0

seL4 Packet Processing Cost

© First Last 2022, CC BY 4.017 sDDF, Oct'22

seL4 vs Linux Networking Performance

3000 SLOC

vs

< 500 SLOC

© Lucy Parker 2022 CC BY 4.0

© First Last 2022, CC BY 4.018 sDDF, Oct'22 © Lucy Parker 2022 CC BY 4.0

seL4 vs Linux RTT Comparison

© First Last 2022, CC BY 4.019 sDDF, Oct'22

Cost Of A Module Crossing

Only 10%

increase…

demonstrates

scalability!

© Lucy Parker 2022 CC BY 4.0

© First Last 2022, CC BY 4.0

• Significant performance boost: 150% improvement on old model

• Smaller latencies and higher throughput achieved over Linux

• Simple works!
Eliminates concurrency bugs
and will help verification effort.

20 sDDF, Oct'22 © Lucy Parker 2022 CC BY 4.0

Takeaways

(Leonid Ryzhyk, SOSP 2009)

© First Last 2022, CC BY 4.0

• Evaluate the passive driver model.

• Benchmark a more complex client.

• Investigate the optimal budgets and periods for different scenarios (eg.
Asymmetric traffic).

• Evaluate what an optimised IP stack might look like.

• Design and build a multiplexor.

• Extend the sDDF to support other device classes.

• Evaluate multicore set up.

21 sDDF, Oct'22 © Lucy Parker 2022 CC BY 4.0

Further Work

© First Last 2022, CC BY 4.0

Code

• Current state of the code as implemented for seL4 Core Platform
can be found here:
https://github.com/lucypa/sDDF

• RFC:
https://sel4.atlassian.net/browse/RFC-12

22 sDDF, Oct'22 © Lucy Parker 2022 CC BY 4.0

https://github.com/lucypa/sDDF
https://sel4.atlassian.net/browse/RFC-12

© First Last 2022, CC BY 4.0

Questions?

23 sDDF, Oct'22 © Lucy Parker 2022 CC BY 4.0

© First Last 2022, CC BY 4.0

Kernel Entries: Passive Model

24 sDDF, Oct'22 © Lucy Parker 2022 CC BY 4.0

Requires one extra

wait() syscall

Other
user

kernel

Driver
user

kernel

Server
user

kernel

