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What Is The seL4 Device Driver Framework?

Framework to provide interfaces and protocol for 
writing performant device drivers as seL4 user 
level programs. 
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Historically bug prone… 

drivers have 7x bug 

density than other OS 

code.

Fewer privileges, 

better fault 

containment

More system 

calls
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What Is The sDDF?

● Currently supports networking 
focused system

● Implemented on top of both 
CAmkES and seL4 Core 
Platform
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Model for 

performant 

device drivers

Asynchronous, zero 

copy transport layer to 

provide communication 

means
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Design

• Driver model uses 3 different memory regions
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Driver doesn’t need 

access to Data
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Driver Model

● Purely reactive
● Single threaded
● Simple

● Active 
… or passive?
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Transport Layer

• Lock free, bounded queues

• Single producer, single consumer

• 2 queues per direction

• Zero copy
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Transmit available:

Buffers with data 

available for transmit Transmit free:

Buffers free for 

re-use
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Transport Layer

struct buffer_descr {
void *address;
size_t length;

}

struct ring_buffer {
uint32_t head;
uint32_t tail;
struct buffer_descr buffer[RING_SIZE];

}
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void enqueue(struct buffer_descr *buffer, 
struct ring_buffer *ring) {

assert(!full(ring));
ring->buffer[ring->head % RING_SIZE] = *buffer;
barrier();
ring->head += 1;

}

struct buffer_desc* dequeue(struct ring_buffer *ring) {
assert( !empty(ring) );
struct buffer_descr *buf = \

ring->buffer[ring->tail % RING_SIZE];
barrier();
ring->tail += 1;

}

Barrier ensures no writes are re-

ordered by the compiler or processor 

across this point
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Buffer Lifecycle
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Transport Architecture Scales

• Components can run on separate cores

• Only MUX and driver are trusted.
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Driver Code: Active Model
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main()
init();
notif = NULL;
while(true) 

event = Signal_and_Wait(notif);
notif = NULL;
if (event & IRQ) 

handle_irq();
notif = ack;
continue;

if (event & Transmit) 
/* process output */
while (!full(HW_Tx) && buf = dequeue(TxA))

enqueue(buf, HW_Tx);
notif = server;

handle_irq()
while (event = clear_hw_events())

if (event & Tc)
while (!full(TxF) && buf = dequeue(HW_Tx))

/* return free Tx buffers to server */
enqueue(buf, TxF);

if (event & Ra)
while (!full(RxA) && buf = dequeue(HW_Rx))

/* process input */
enqueue(buf, RxA);

Signal(server);
while (!full(HW_Rx) && buf = dequeue(RxF))

/* return free Rx buffers */
enqueue(buf, HW_Rx); 

Process multiple 

packets in one 

invocation

Can process multiple 

IRQ events in one 

invocation

Combine syscalls for 

performance
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Kernel Entries: Active Model
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6 more than a 

monolithic 

kernel requires. 

Compare 

system call 

cost vs packet 

processing 

cost. 
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Rate Limiting

• Driver runs at highest priority to minimise round trip times

• Regardless of active/passive model, the protocols for transmit are 
synchronous.

• Requires limiting CPU time by configuring budgets and periods of 
scheduling contexts used by higher priority components. 
And/Or limiting the queue size. 
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Performance
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Set Up

• Client just echoes 
packets

• IPbench sends UDP 
packets and measures 
throughput and latencies

• Idle thread counts cycles 
to calculate CPU 
Utilisation
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Idle

Idle
Built with 

CAmkES and 

Core Platform

Both single core

Split across 4 

different 

machines to 

achieve 

desired load
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• Simpler transport

• Adjustment of priorities

• Showed 50% 

improvement! 

• But could not combine 

system calls easily…

Old Transport vs New: CAmkES
Networking Performance
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seL4 Core Platform vs CAmkES
Networking Performance
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• Reduced kernel entries

• Simpler platform

• Showed 70% 

improvement, 150% 

over old CAmkES!

• Limited drivers budget 

to remove performance 

collapse. 
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seL4 Packet Processing Cost
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seL4 vs Linux Networking Performance

3000 SLOC

vs 

< 500 SLOC
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seL4 vs Linux RTT Comparison
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Cost Of A Module Crossing

Only 10% 

increase… 

demonstrates 

scalability!
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• Significant performance boost: 150% improvement on old model

• Smaller latencies and higher throughput achieved over Linux

• Simple works! 
Eliminates concurrency bugs 
and will help verification effort. 
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Takeaways

(Leonid Ryzhyk, SOSP 2009)
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• Evaluate the passive driver model.

• Benchmark a more complex client.

• Investigate the optimal budgets and periods for different scenarios (eg.
Asymmetric traffic).

• Evaluate what an optimised IP stack might look like.

• Design and build a multiplexor.

• Extend the sDDF to support other device classes.

• Evaluate multicore set up.
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Further Work
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Code

• Current state of the code as implemented for seL4 Core Platform 
can be found here: 
https://github.com/lucypa/sDDF

• RFC:
https://sel4.atlassian.net/browse/RFC-12
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https://github.com/lucypa/sDDF
https://sel4.atlassian.net/browse/RFC-12
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Questions?
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Kernel Entries: Passive Model
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Requires one extra 

wait() syscall
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