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Abstract—In contrast to testing, mathematical reasoning and
formal verification can show the absence of whole classes of
security vulnerabilities. We present the, to our knowledge, first
complete, formal, machine-checked verification of information
flow security for the implementation of a general-purpose mi-
crokernel; namely seL4. Unlike previous proofs of information
flow security for operating system kernels, ours applies to the
actual 8,830 lines of C code that implement seL4, and so rules
out the possibility of invalidation by implementation errors in
this code. We assume correctness of compiler, assembly code,
hardware, and boot code. We prove everything else. This proof
is strong evidence of seL4’s utility as a separation kernel, and
describes precisely how the general purpose kernel should be
configured to enforce isolation and mandatory information flow
control. We describe the information flow security statement
we proved (a variant of intransitive noninterference), including
the assumptions on which it rests, as well as the modifications
that had to be made to seL4 to ensure it was enforced. We
discuss the practical limitations and implications of this result,
including covert channels not covered by the formal proof.

I. INTRODUCTION

Provably secure operating systems have been a research
topic for more than 30 years [11], [17], [47], [53], and
while there are a number of small high-assurance separation
kernels [25] in deployment such as INTEGRITY-178B [44],
even the strongest levels of security evaluation schemes
such as Common Criteria do not demand implementation-
level proofs, which have been widely thought infeasible.
Modern mainstream OSes are riddled with security problems
as is to be expected for large monolithic systems, and even
implementations of the proposed mainstream fix for this
problem, hypervisors like Xen [7], have been shown to
exhibit a number of critical vulnerabilities [39].

This paper presents the first formal, fully machine-
checked, mathematical proof that a high-performance,
general-purpose microkernel C code implementation en-
forces strong information flow control. Together with the
existing proofs of seL4’s functional correctness [27] and in-
tegrity enforcement [51], this work shows that seL4 provably
enforces strong access control mechanisms, in particular the
high-level security properties of confidentiality and integrity.
Our proof assumptions explicitly state how to configure
this general-purpose OS kernel to enforce isolated partitions
with controlled communication channels. Unlike previous
information flow verifications ours applies to the actual
8,830 lines of C code that implement seL4, rather than to a

manually abstracted model of its behaviour. Our main proof
assumptions stem from the foundational work on functional
correctness [27]. We assume correctness of compiler, as-
sembly code, hardware, and boot code; we prove everything
else. The verified seL4 kernel runs on commodity ARMv6
and ARMv7 hardware and is available commercially under
the product name OKL4:verified, as well as freely in binary
form for academic use [41].

The information flow property we prove for seL4 is
a variant of intransitive noninterference [19], [40], [46]
proposed for OS kernels [36]. This property enforces confi-
dentiality on storage channels and logical time. As is usual
for noninterference results, fine-grained timing behaviour of
the hardware is not covered by the formal baseline model
and therefore neither by the proof. This means covert timing
channels still need to be mitigated by complementary (e.g.
probability-based) techniques. We argue that for modern
commodity hardware the absence of such channels is not
fully enforceable and that the best that can be expected is
to reduce channel bandwidth based on the risk profile of a
particular deployment.

We analyse the limitations and strength of the proof
statement in detail in Section V. By formally stating the
assumptions under which seL4 enforces information flow
security, this result also provides an unambiguous descrip-
tion of how seL4 should be configured to enforce a par-
ticular information flow policy. The strongest restriction on
such configurations is the absence of direct memory access
(DMA) for devices. This is not an unusual restriction, and is
shared with commercial separation kernels in deployment.
New hardware mechanisms such as IOMMUs [3] may
enable us to relax this in the future.

In detail, the technical contributions of this work are:
• to our knowledge, the most detailed and extensive

machine-checked formal verification of information
flow security ever for a general-purpose OS kernel;

• a formal, and thus precise and unambiguous, descrip-
tion on how to configure the general-purpose seL4
microkernel to enforce a given information flow policy;

• achieving the above results without sacrificing perfor-
mance or preventing the use of the dynamic general-
purpose microkernel API inside partitions.

To achieve this result, we extended the seL4 API only
minimally by adding a static partition-based scheduler com-



mon to separation kernels. We disallow none of the seL4
API other than requiring that seL4 be configured to pre-
vent asynchronous interrupt delivery to user-space partitions
which would introduce an information channel. This means
that device drivers must poll for device interrupts via mem-
ory mapped IO, which is typical behaviour for separation
kernels [42] and high-assurance systems.

While traditional separation kernels typically provide no
system calls at all after initial configuration, in our general-
purpose seL4 setting, all other kernel facilities are available
within partitions, including dynamic memory allocation and
revocation, (intra-partition) inter-thread messaging, capabil-
ity transfer and shared memory. Between partitions, seL4
provides asynchronous notifications and shared memory to
facilitate uni-directional communication. The information
flow security theorem implies that these primitives are free of
storage back-channels, and that the dynamic intra-partition
services do not violate information flow security either. A
modified version of the paravirtualised Linux system Wom-
bat [29] allows an entire Linux instance and its applications
to run within a partition. This enables mandatory information
flow control policies to be enforced between untrusted and
legacy applications, with guarantees on information flow
provided by a strong machine-checked theorem.

During this proof of noninterference we did not find any
information-flow problems in the seL4 kernel that required
code changes, as we had hoped given the previous intensive
work on proving functional correctness and integrity. We
did, however, find a number of API features that had to
be explicitly forbidden for inter-partition use. For experts,
most of these were not surprising. For instance it is well-
known that synchronous IPC will introduce an information
flow back-channel, but the proof clearly identified all in-
stances. This included a number of cases that were not
immediately obvious, such as capability deletion potentially
and observably crossing partition boundaries. All of these
could be excluded by reasonable restrictions on supported
seL4 configurations, detailed in Section IV and summarised
in Section V.

Our security proof—like all others—is not an iron-clad
statement of general security for seL4, but rather a powerful
piece of evidence about seL4’s security mechanisms and its
suitability as a separation kernel. Importantly, any system-
level security evaluation can now concentrate its effort on
validating proof assumptions, which is a much simpler job
than asserting information flow security, and on using com-
plementary techniques for the remaining items that are not
covered by our proof (detailed in Section V). Furthermore,
the proof statement addresses whole high-level classes of
attack such as information leakage to confined subjects
without access to timing sources, and the evaluation can be
guided by precise formal statements of policy and system
deployment assumptions. The security proof gives precise
predictions about the strength of mechanisms; the previous

functional correctness proof shows that these mechanisms
will be reliably enforced by the implementation.

The remainder of this paper is organised as follows. We
briefly summarise the attacker/threat model in Section II. We
then discuss background material in Section III, including
the seL4 API and how it can be used to implement separation
and information flow control, as well as past formal seL4
verification work that our proof builds upon. We present our
formal statement of information flow security and discuss
its proof in Section IV. We consider its implications and
limitations in Section V. Section VI situates our result in
the context of related work before we conclude.

II. THREAT MODEL

Our target deployment scenario is a physically secured,
high-assurance, uni-processor system with trusted hardware.
The system may potentially have access to untrusted net-
works and run mutually distrusting application software. The
security goal for the kernel is to only permit information
flows according to the partitions and information flow policy
it was configured with.

The threat model assumes that all user-level code after
system initialisation is malicious and acting in concert to
break the information flow policy. The attacker’s goal is to
read or indirectly infer the contents (i.e. private state) of a
partition that according to the information flow policy should
remain secret to it. The attacker is assumed to know the
configuration and code of the entire system, including the
kernel, but not the contents of other partitions.

As mentioned, timing channels are not in the scope of this
proof and must be analysed by complementary techniques.
The channels that are in scope are storage channels and
causal deduction. The attacker may run any sequence of
instructions or attempt any kernel call, to break the infor-
mation flow policy. Our proof statement is that, subject to
the limitations and assumptions discussed in Section V, the
attacker will not succeed.

III. BACKGROUND

A. The seL4 Kernel API

The seL4 microkernel provides a minimal set of mecha-
nisms for implementing secure systems: threads, capability
management, virtual address spaces, inter-process commu-
nication (IPC), and interrupt delivery. The state of each
instance of a service is maintained within the kernel by
data structures termed kernel objects. For example, for each
thread in a system there is a thread object that stores
the information about the thread relevant to scheduling,
execution, and access control. User-space programs can only
refer to kernel objects indirectly through capabilities [16],
each of which combines a reference to a specific object with
a set of access rights. For example, a thread cannot start,
stop, or read or modify the registers of another unless it
possesses a capability for the corresponding thread object.
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Capabilities are managed by the kernel, and stored in
kernel objects called CNodes. Each thread object also con-
tains several distinguished capabilities. One of these defines
the root of a thread’s CSpace: a directed graph of the
CNodes the thread can access. A user-space program refers
to capabilities in its CSpace via addresses that specify paths
relative to its CSpace root. It is possible to fabricate an
address but never a capability; invalid addresses are simply
rejected during decoding. We say that a thread invokes a
capability when it passes the address of that capability to a
system call. For instance, a CNode capability can be invoked
to copy, move, delete, or derive (reduce the associated access
rights of) the capabilities contained within it.

Besides access control, capabilities also serve to manage
memory. Unallocated memory is made available through
Untyped memory capabilities that can be retyped into kernel
objects like CNodes or thread objects. Retyping creates fresh
capabilities that refer to the newly created objects, and which
are derived from the original Untyped capability. The revoke
system call deletes all capabilities derived from the invoked
Untyped capability, which effectively reclaims all resources
allocated from within it and is a useful way of destroying
an entire subsystem in a single system call.

Untyped memory can also be allocated to kernel ob-
jects representing page directories, page tables, and pages.
Another of the distinguished capabilities stored in each
thread object refers to the page directory at the root of
the associated thread’s virtual address space (VSpace). By
invoking this capability, and those for the associated page
tables and pages, a thread can direct the kernel to configure
the memory management unit of the underlying platform. In
particular, multiple threads that each possess capabilities to
the same physical pages may each map those pages into their
respective VSpaces and thereafter communicate by reading
and writing to the shared memory.

Threads can also communicate and synchronise by send-
ing messages through IPC endpoints. There are two types
of endpoint: synchronous, where a sender blocks waiting for
a receiver; and asynchronous, where a sender never blocks.
Capabilities to either kind of endpoint may carry the Send
and Receive access rights; a thread with a Send capability to
an endpoint can use it to transmit messages to any thread that
has a Receive capability to the same endpoint. In addition,
capabilities for synchronous endpoints may also carry the
Grant right that allows senders to transmit capabilities to
receivers in the style of classical take-grant systems [30].

Two special capability types are used to control the ker-
nel’s interrupt delivery mechanism. An InterruptControl ca-
pability confers the authority to create new InterruptHandler
capabilities for specific interrupt request (IRQ) numbers,
each of which confers the authority to receive an IRQ.

Interrupts are disabled in kernel mode to avoid in-kernel
concurrency. Low interrupt latencies are ensured by adding
preemption points to certain long-running system calls, such

as revoke which iteratively deletes derived capabilities. In-
terrupts are polled at these points and, if necessary, an active
system call may be suspended until the requesting thread is
next scheduled to run.

B. Using seL4 as a Separation Kernel

As a microkernel, seL4 is designed to provide mecha-
nisms only; policy is implemented in user-space. On startup,
the kernel hands control to the initial user-level thread, which
has complete authority, and whose job it is to configure the
system including implementing any security policy that is to
be enforced by carefully distributing subsets of its authority
to the entities that it sets up.

This means that, when used as a separation kernel, the
initial thread is responsible for creating each of the partitions
and any communication channels between them. The initial
thread is then responsible for destroying itself, and once this
is completed correctly the system is configured to enforce
separation. It is from this state, after this configuration has
occurred, that our proof of information flow security applies.

Each partition spans both user-space and kernel-space: it
contains not just user memory mapped into the VSpaces of
the threads within the partition, but may also include kernel
objects that those threads have capabilities for. Concretely,
each partition will typically contain a number of thread
objects with associated page directories, page tables and
pages to implement their VSpaces, as well as a number of
CNode objects to implement their CSpaces, and any other
kernel objects used within the partition such as endpoints for
intra-partition messaging and capability transmission. The
partition may also contain Untyped Memory capabilities to
allow new objects to be created and intra-partition subsys-
tems to be destroyed. All kernel services, other than interrupt
delivery (see below), are available to partitions. This allows
partitions to host large and complex applications, not least a
paravirtualised version of Linux to host legacy applications.

As mentioned in Section I, shared memory and asyn-
chronous endpoints allow uni-directional communication
between partitions. These facilities must be set up by the
initial thread when partitions are created, which involves
distributing the necessary capabilities for these facilities to
each partition that is going to use them. This is because
capabilities cannot be transferred between partitions without
breaking authority confinement [51], which is a necessary
condition for our information flow security property.

Figure 1 depicts a small example system with two par-
titions, that communicate via shared memory and asyn-
chronous endpoints. Partition 2 on the right has read access
to a shared page in Partition 1 on the left, and Partition 1 has
send rights to an asynchronous endpoint in Partition 2. This
allows information to flow only from Partition 1 to Partition
2, in accordance with our information flow theorem.

To implement separation in seL4, we had to extend
its existing priority-based scheduler to implement partition

3



Thread

Thread PD

CNode

PT

Page

SPage

ThreadPD

PT

CNodeAEPAsyncSend

RW
R

Partition 1 Partition 2
Recv

Figure 1. A small example system, with two partitions.

scheduling. Here, the scheduler follows a static round-robin
schedule between partitions, with fixed-length time slices per
partition, while doing dynamic priority-based round-robin
scheduling of threads within each partition. This ensures that
the choice of which partition is currently running depends
only on this fixed schedule, while the choice about which
thread is running in the current partition depends only on the
internal state of the current partition. Thus scheduler choices
do not leak information between partitions.

A limitation of the current implementation that we discuss
further in Section V is that partitions can overrun their time-
slices by performing system calls just before a partition
switch would have occurred. This happens because interrupts
are disabled in kernel mode, which prevents a partition
switch from being serviced until after the system call has
been handled or a preemption point has been reached. While
there exist obvious solutions to this problem, deciding on
the most appropriate fix necessarily involves a trade-off
between performance and timing channel bandwidth which
can only be properly decided within the context of a specific
deployment scenario. For this reason, we have currently left
a general treatment of this limitation as future work. This
channel can trivially be drastically reduced by configuring
seL4 to not permit any intra-partition system calls at all,
as in a traditional separation kernel; a classic “yellow-light”
mechanism, whereby kernel services are denied near the end
of a partition’s timeslice, based on a sound upper bound
for the worst-case execution time of the kernel [12] in this
configuration could fully eliminate this channel.

Another limitation mentioned earlier in Section I is that
the initial thread must ensure that the kernel APIs for
interrupt delivery are not exposed to any partition. It does
so trivially by never giving any partition an InterruptControl
or InterruptHandler capability, and never using any such
capabilities that it might possess. As explained earlier, this
forces partitions to interact with devices solely through
memory-mapped IO.

C. Functional Correctness Proof

Our information flow security proof builds upon two
earlier verification results for the seL4 microkernel. The first
is a proof of functional correctness [27], reported by Klein
et al. in 2009. The second is a proof of integrity enforcement

for seL4 [51], completed by Sewell et al. in 2011.
The functional correctness proof for seL4 is a classical

proof of refinement [1], [15], showing that seL4’s C im-
plementation refines (or implements) an abstract specifica-
tion of its functional behaviour, which we call simply the
abstract specification. Each level is formalised as a state
machine whose transitions include processing an interrupt or
exception, performing a system call, and ordinary user-level
operations like reading and writing user-accessible memory.

For an automaton A and initial observable state s and
sequence of transitions as, let execution A s as denote the set
of observable states that can be reached by A performing as.
Then, an automaton C refines A, written A v C, when C’s
behaviours are a subset of A’s.

A v C ≡ ∀ s as. execution C s as ⊆ execution A s as

This proof took around 25 person-years to complete [27].
Much of that effort was devoted to proving invariants, which
the kernel maintains and which are necessary preconditions
in the refinement proof. We make direct use of these
invariants when reasoning about information flow in seL4.

Importantly, the functional correctness proof enabled us
to perform our information flow security proof over the
abstract specification, which is far simpler to reason about
than the kernel’s C code. The formulation of information
flow security that we adopt is preserved by refinement [36].
This means that once proved for the abstract specification,
we can compose this result with the refinement theorem to
derive information flow control for the kernel’s C code.

By proving information flow security over the abstract
specification, we gain a substantial saving in effort (see Sec-
tion V-D) that we estimate is about an order of magnitude.

D. Integrity and Authority Confinement

Sewell et al.’s proof of integrity and authority confinement
for seL4 [51], also over the abstract specification, provides
the second foundation for our proof of information flow.
Roughly, the integrity result says that all changes to the sys-
tem state are authorised by the capabilities of the currently
running thread. Authority confinement says that, in suitable
system configurations, no thread’s authority will increase.

A more formal account of both properties requires 1) an
access control policy that captures the subjects in a system,
and the authorities that each has to each of the others,
2) an abstraction function that partitions kernel objects and
memory locations between subjects in an access control
policy, and, 3) the wellformedness constraints necessary to
ensure that the authority of subjects cannot increase. We will
now describe each element in more detail.

An access control policy is essentially a directed graph
with subject labels on nodes and authority types on edges.
For example, the policy in Figure 2, derived from the system
depicted in Figure 1, shows subjects labelled ‘S1’ and
‘S2’, where S1 has Read and Write authority to itself and

4



S1 S2
Read

AsyncSend

ReceiveRead

Write

Figure 2. Example access control policy.

AsyncSend authority to S2, and S2 has Receive authority
to itself and Read authority to S1; other self-edges are
implicit. The other possible authorities are Grant, SyncSend,
Reset, and Control. SyncSend and AsyncSend represent
the authority to send on synchronous and asynchronous
endpoints respectively. Reset represents the authority to reset
an object to its original state. Control authority implies
complete control over a target subject; it exists, for instance,
when one subject has a thread capability to another, allowing
it to overwrite the other’s registers.

An abstraction function maps each kernel object and
memory location to a subject label, partitioning all system
resources between access control subjects. Integrity and
authority confinement are formulated over a triple pas that
contains an access control Policy, an Abstraction function,
and the label of the currently active Subject. We often refer
to this triple as simply an access control policy.

Given a specific pas and a state s, pas-refined pas s states
that pas both conservatively over-approximates the authority
distribution of s and that it meets certain wellformedness
constraints [51]. The wellformedness constraints include
standard requirements like assuming full reflexive authority
and the absence of Grant authority between distinct subjects,
which could trivially allow a subject’s authority to exceed
that prescribed by pas.

Given these elements, the proof of authority confinement
shows that for all access control policies pas and states s
that satisfy the invariants of the abstract specification, if
pas-refined pas s holds, then for all states s ′ directly reach-
able from s, pas-refined pas s ′ must also hold. In other
words, pas is an upper bound on authority within a system.

The integrity property, on the other hand, is captured by
the predicate integrity pas s s ′ between any pair of states s
and s ′. It shows that any modification that the current subject
can perform is permitted by the authority represented in pas,
thus giving a bound on the differences between s and s ′. The
main integrity theorem states that for all states s that satisfy
the invariants, if pas-refined pas s holds, then for all directly
reachable states s ′, integrity pas s s ′ also holds. In terms of
the example of Figure 2, integrity says that whenever the
subject S2 executes, including during system calls it might
make, nothing in subject S1 changes, because S2 has only
Read authority to S1.

Combining the integrity and authority confinement theo-
rems allows the conclusion that integrity is preserved across

PSched

P1 P2

Figure 3. Example information flow policy.

all sequences of transitions (for wellformed access control
policies). This is important, because we use integrity to help
prove information flow security for seL4.

IV. INFORMATION FLOW CONTROL FOR SEL4

In this section, we describe how information flow control
was formalised for seL4 and discuss its formal proof.

A. Information Flow Policy

Our formulation of information flow security builds on
the integrity and authority confinement proofs for seL4. We
begin by mapping an access control policy to a correspond-
ing information flow policy, which allows us to re-use the
integrity and authority confinement results to help us prove
information flow security.

Each access control subject Si induces a corresponding
information flow partition Pi. We also include a parti-
tion PSched for the scheduler, as required by our formu-
lation of information flow security [36]. The information
flow policy  is computed in two steps as follows.

We first compute the extent of each partition Pi that is
not PSched. The extent of Pi is simply the set of all access
control subjects that Pi can directly infer information about.
This includes those that Pi can read directly as well as
those that the kernel reads during a system call and then
reveals to Pi in the results or effects of the system call. This
computation is a function of just the access control policy,
and is governed by a set of simple rules. For instance, subject
Si is necessarily in the extent of partition Pi; if subject Si
has Read authority to a subject Sj then Sj is in the extent
of partition Pi etc. Referring to Figure 2, the extent of the
partition P1 induced by subject S1 is simply the subject S1;
the extent of the partition P2 induced by subject S2 is both
subjects S1 and S2 because S2 has Read authority to S1.

Having computed the extent of each partition Pi, the
information flow policy  is computed using the following
two rules. Here Pi and Pj are non-PSched partitions.

1) Pi  Pj if the access control policy allows Si to affect
any subject in Pj’s extent.

2) PSched  Pi for all Pi, and PSched  PSched.
The calculation of whether Si is allowed to affect some

subject Sk according to the access control policy is derived
from the integrity theorem: Si can affect Sk according to
policy pas whose current subject is Si, when there exist states
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Figure 4. Transition systems for the seL4 abstract specification. Shading
indicates whether the scheduling partition PSched is active (unshaded)
or not (shaded). For KEntry ev, PSched is active iff ev = Interrupt.

s and s ′ that differ only for some object in Sk for which
pas-refined pas s holds and integrity pas s s ′ holds.

It is trivial to prove that, under these rules,  allows no
partition other than PSched to send information to PSched;
that is reflexive; and that PSched can send information to
all partitions. This last result is expected since the scheduler
can necessarily affect any other partition by scheduling a
thread within it. The first result ensures that the scheduler
cannot then become a global transitive channel through
which information can flow from any partition to any other.

Figure 3 depicts the information flow policy, excluding
self-edges, derived from Figure 2’s access control policy.

B. System Model

Before describing how we formalise information flow
security for seL4, we first describe the formal model of the
kernel over which this property is defined. This model is
essentially a state machine with unlabelled transitions.

Figure 4(a) depicts the transition system of the seL4
abstract specification for which we proved information flow
security, comprising 4,970 source lines of Isabelle/HOL. The
transitions do not carry labels; rather, all information about
each state transition is encoded in the pre- and post-states
of the transition. One piece of information encoded in the
state is the current abstract mode of execution, which labels
the nodes in Figure 4(a). The KEntry mode is parameterised
by a kernel event ev, indicating the reason for kernel entry,
whose values include Interrupt, to model the arrival of device
interrupts; SyscallEvent, to model the occurrence of user
traps; and others that represent virtual memory faults and
exceptions etc. The abstract modes that model kernel-mode
execution begin with ”K”. The transition from KEntry to
KPreempt models the kernel handling a system call, reaching
a preemption point and preemption occurring because an
interrupt has arrived. The following transition models the
kernel handling the preemption—i.e. responding to the just-
arrived interrupt. The transition from KEntry to KSched
models the kernel handling an event without preemption
occurring.

The transition from KSched models the execution of the
scheduler, which is invoked at the end of every kernel event
before returning to user-space. When invoked, the scheduler
examines the remaining time slice of the current partition.
When the remaining time slice is zero the scheduler switches
to the next partition in the static partition schedule; when
it is non-zero the scheduler schedules the highest priority
runnable thread in the current partition or the idle thread if
there are no runnable threads to choose.

The current partition’s remaining time slice is decre-
mented upon the arrival of timer interrupts, which are seen
only by the kernel. Recall, from Section III-B, that we
assume the system is initialised so that all other interrupts are
disabled. This is formalised by the property only-timer-irq.
It is relatively straightforward to prove that only-timer-irq
is invariant across all executions. So the arrival of each
interrupt marks the passage of another timer tick.

The transitions from KExit model exiting the kernel back
to user-mode. We distinguish the cases in which a user-level
thread is running (UserMode) from those in which the idle
thread is running (IdleMode), because in the latter the only
way to enter the kernel is by the arrival of a device interrupt
(KEntry Interrupt).

The self-loop transition on UserMode models the ordi-
nary user-level actions of the currently running thread, for
instance reading and writing to the physical memory that is
mapped in its virtual address space. The self-loop transition
on IdleMode represents the passage of time as the idle thread
awaits the arrival of the next interrupt.

The transition system in Figure 4(a) differs a little from
the transition system of the kernel about which functional
correctness was originally proved [27]. The original tran-
sition system did not have the states KPreempt, KSched
and KExit and had just single transitions from kernel entry
to user-mode and to idle-mode respectively. We modified
it (and then re-established functional correctness) to break
these kernel transitions into a number of smaller steps be-
cause the actions of handling timer interrupts and scheduling
a new partition occur on behalf of the scheduling partition,
PSched, which is distinct from all other partitions Pi. These
must therefore be represented as separate transitions.

The machine model on which the kernel specifications
sit uses an interrupt oracle to model the arrival of device
interrupts. This oracle is simply an infinite stream of values
in the range 0x00–0xFF (where 0xFF means no interrupt is
currently active), with a natural number variable that records
the current position in this stream. The machine function
getActiveIRQ returns the currently active IRQ. When called,
it advances the current position of the interrupt oracle and
then examines the value at the new position in the interrupt
stream. getActiveIRQ returns this value if it is not 0xFF
and is allowed by the current interrupt masks; otherwise
getActiveIRQ returns a null value. Under the assumption
only-timer-irq, which implies that all non-timer interrupts are
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masked off, getActiveIRQ can return only one of two possible
answers each time it is called: either a timer interrupt has
arrived, or no interrupt has arrived since getActiveIRQ was
last called. We prove information flow security for all such
oracles, and assume that partitions are allowed to know the
position of all timer interrupts in the oracle stream as well
as the current oracle position. This implies that all partitions
are allowed to observe the passage of global time.

To formalise information flow, we had to transform the
transition system of Figure 4(a) into one with larger exe-
cution steps. While we do not model the passage of time
explicitly, it is exposed (albeit quite coarsely) in our formal
model of the kernel via the current position of the interrupt
oracle. Advancing this position, by calling getActiveIRQ,
allows the passage of time to be observed. The amount that
the oracle position is advanced when handling a pre-emptible
system call necessarily depends on how many preemption
points were traversed, which depends on the input data to
the system call. Thus the change in the oracle position on any
individual transition of Figure 4(a) could leak information
if observed by another partition.

Fortunately, in reality, no other partition can observe any-
thing about the new interrupt state until it next executes—
i.e. until after the next partition switch. We transform the
transition system of Figure 4(a) to reflect this reality, arriving
at the transition system depicted in Figure 4(b). This trans-
formation coalesces together all transitions from one KExit
until the next (timer) interrupt is processed, in which case
the system’s new mode is either KPreempt (if the interrupt
arrived during a preemptible system call) or KEntry Interrupt
(otherwise). Because only the timer interrupt is enabled these
transitions represent all activity by the currently running
partition in between one timer tick and the next, and show
up in the final transition system as a single transition from
KExit to KPreempt or KEntry Interrupt respectively. We also
coalesce all transitions from KPreempt to the next KExit and
similarly for KEntry Interrupt. These transitions represent
activity by the scheduling partition PSched.

The amount that the interrupt oracle position is advanced
on any transition of this new transition system depends only
on its previous position and the position of the next timer
interrupt: on a transition from KExit it is advanced to the
position of the next timer interrupt in the stream; on a
transition to KExit it is advanced once only, during servicing
of the just-arrived interrupt.

C. Formalising Information Flow Security

With the system model as depicted in Figure 4(b) we may
now formalise information flow security, given an informa-
tion flow policy  derived as explained in Section IV-A.

We adopt a variation of intransitive noninterference pro-
posed in earlier work [36] for operating system kernels. An
intransitive noninterference variant is most appropriate here
because the information flow policy  may, in general, be

intransitive, in that it may allow information flows from Pi to
Pj and Pj to Pk, without allowing a direct flow from Pi to Pk.
Crucially, however, our definition admits systems in which
the association between each transition and the partition on
whose behalf the transition is said to occur depends on the
pre-state of the transition. This is required since, as in other
operating system kernels, when an event like a system call
happens in seL4, the kernel must consult the scheduling data
structures to determine which partition is currently active in
order to decide which partition the system call has been
made by. The mapping from transitions to partitions is thus
state-dependent.

Our definition of information flow security is also pre-
served by refinement [36], which is vital in allowing us
to prove it about seL4’s abstract specification and then
conclude that it must hold for seL4’s C implementation by
virtue of the functional correctness result.

Our definition of information flow security is a descendant
of von Oheimb’s notion of nonleakage [40]. This condition
forbids partitions from being able to learn about the contents
of others but, unlike traditional purge-based noninterfer-
ence definitions [19], [46] and more recent improvements
thereof [34], it does not prevent them from learning about
the occurrence of transitions of others. Before defining our
condition formally it is worth explaining why it is most
appropriate here, over purge-based formulations.

Recall, from Section III-B, that seL4 schedules partitions
in accordance with a fixed, pre-determined schedule. At
any point in time, therefore, the scheduler always knows
exactly which partitions have executed in which order. The
system model, depicted in Figure 4(b), over which our
information flow security proof is conducted has two kinds
of transitions: those leading to KExit that model actions of
the scheduling partition PSched, and the others that model
actions of the ordinary partitions Pi. These latter model the
entire execution of a partition from one timer tick to the next.
The static schedule pre-determines exactly how many timer
ticks each partition should run for before advancing to the
next position in the schedule. Therefore whenever it executes
the scheduler partition PSched knows the exact number of
(unlabelled) transitions each partition has performed so far.

Recall also that the information flow policy  , derived
from the system’s access control policy, allows no other par-
tition to send information to the scheduler partition PSched.
Because we cannot prevent PSched from learning the num-
ber of transitions that have occurred so far, it does not make
sense to adopt a purge-based noninterference condition that
would forbid partitions learning about the occurrence of
others’ transitions. Instead, it is more appropriate to require
that partitions be unable to learn about the contents of others.
In our model, with unlabelled transitions, the information
about each transition is encoded in the partition-contents.
Thus such a condition still prevents partitions from learning
the nature of others’ transitions; it allows otherwise isolated
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partitions to learn only the number of transitions each other
performs, as pre-determined by the static schedule.

Such noninterference variants have been well explored
in the context of programming language security [48], for
instance to assert that the final contents of low-classification
variables should never depend on the initial contents of high-
classification ones. Our condition [36], called nonleakage, is
an extension of the original nonleakage formulation of von
Oheimb [40].

Nonleakage is defined formally as follows. Let the initial
state of the system be s0. Let reachable s denote when state s
is reachable from s0 by zero or more transitions.

For two states s and t and a partition Pi, let s Pi∼ t denote
when, for each entity e in Pi’s extent, e’s state is identical in s
and t. s PSched∼ t when s and t agree on the scheduler’s private
state, which includes which domain is currently running and
how many timer ticks it has left on its timeslice. For a set
of partitions P, let s

P
≈ t mean ∀ p∈P. s

p∼ t.
Let Step denote the step-relation on states of the unla-

belled transition system depicted in Figure 4(b): (s, s ′) ∈
Step when the system can transition from state s to state s ′.

Let part s denote the currently running partition in state s,
determined by examining the private state of the scheduler.
It is easily shown that s PSched∼ t −→ part s = part t.

Then the function sources is used to calculate the par-
titions that are permitted to send information to a specific
partition p when a sequence of n (unlabelled) transitions
occurs from a state s; this is the set sources n s p.

sources 0 s p = {p}
sources (n + 1) s p =⋂

{sources n s ′ p | (s, s ′) ∈ Step} ∪
{w | w = part s ∧

(∀ s ′. (s, s ′) ∈ Step −→
(∃ v. part s  v ∧ v ∈ sources n s ′ p))}

The first equation says that partition p is always permitted
to send information to itself. The second says that, when one
or more transitions occur from state s, firstly: any partition is
permitted to send information to p that is always permitted
to do so after the first transition has occurred; and secondly:
that the current partition is permitted to send information to
p if it is always permitted to send information to a partition
who is subsequently permitted to send to p.

Nonleakage asserts that the only partitions that can influ-
ence the contents of an arbitrary partition p after n transitions
have occurred from an arbitrary reachable state s are PSched
and those in sources n s p. This condition is phrased by
considering the counterfactual case in which the state s
is modified to produce a new reachable state t such that
s

sources n s p
≈ t and s

PSched∼ t, and then asserting that s ′
p∼ t ′

for all states s ′ and t ′ reached after performing n transitions
from s and t respectively, abbreviated s

p∼n t.
nonleakage ≡ ∀ n s t p. reachable s ∧ reachable t ∧ s

PSched∼ t

∧ s
sources n s p
≈ t −→ s

p∼n t

This definition considers pairs of finite executions of
identical length n, in line with the observation above that
purge-based definitions are not appropriate in our setting.

This definition is also entirely termination insensitive,
because it is trivially satisfied when non-termination occurs.
However, the functional correctness proof for seL4 proves
that its execution is always defined, implying that all transi-
tions for the transition system depicted in Figure 4(a) always
terminate. Under the assumption that the interrupt oracle
delivers an infinite stream of timer interrupts, it is relatively
straightforward to prove that the coalesced transitions of the
transition system depicted in Figure 4(b) always terminate
too—since a timer interrupt will always arrive that then
causes the scheduling partition to take over. Hence, non-
termination is not an issue and a termination insensitive
formulation of information flow security is appropriate here.

D. Information Flow Theorem

LetMA be the automaton for the seL4 abstract specifica-
tion, and nonleakageA denote nonleakage applied to MA.
The top-level information flow theorem we prove for MA,
simplified for presentation, is the following.

Theorem 1: seL4’s abstract specification enforces in-
formation flow security. Let s0 denote the initial state of
the system, after configuration, and pas be an access control
policy, and  the corresponding information flow policy.
Then if s0 satisfies the kernel invariants, pas is consistent
with s0 and wellformed for all subjects, and all interrupts
other than the timer interrupt are disabled in s0, and all
subject-crossing capabilities are safe in the sense described
below in Section IV-E, then nonleakage is enforced:
invs s0 ∧ pas-refined-wellformed pas s0 ∧ only-timer-irq s0 ∧
sscc pas s0 −→ nonleakageA

Here, sscc is a condition on capabilities that cross parti-
tion boundaries, described later in Section IV-E. Intuitively,
it ensures that partition-crossing communication channels
can never be destroyed, as destroying an otherwise uni-
directional channel signals to both sender and receiver.

LettingMC be the corresponding automaton for the seL4
C implementation, and nonleakageC denote nonleakage ap-
plied to MC , the functional correctness proof [27] implies
that: MA v MC . We then have that because nonleakage
is preserved by refinement: MA v MC ∧ nonleakageA

−→ nonleakageC . Information flow security for seL4’s C
implementation then follows trivially.

Theorem 2: seL4’s C implementation enforces infor-
mation flow security. Let s0 denote the initial state of the
system, after configuration, and pas be an access control
policy, and  the corresponding information flow policy.
Then:
invs s0 ∧ pas-refined-wellformed pas s0 ∧ only-timer-irq s0 ∧
sscc pas s0 −→ nonleakageC
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E. Proving Information Flow Security

Like other noninterference variants, nonleakage is proved
by discharging proof obligations called unwinding condi-
tions that examine individual execution steps. The following
unwinding condition, called confidentiality-u, is sound and
complete for (i.e. is equivalent to) nonleakage [36].

confidentiality-u ≡ ∀ p s t. reachable s ∧ reachable t ∧ s
p∼ t

∧ s
PSched∼ t ∧ (part s  p −→ s

part s∼ t) −→ s
p∼1 t

It says that the contents of each partition p after each step
can depend only on the contents of the following partitions
before the step: p, PSched and the currently running parti-
tion part s when it is allowed to send information to p. In
other words, information may flow to p only from PSched
and the current partition in accordance with the information
flow policy  .

To prove this condition for the execution steps of our
transition system (depicted in Figure 4(b)), we consider the
following cases.

Case 1 — part s  p: In this case confidentiality-u
collapses to the following property, noting that part s  
p ∧ p = PSched −→ part s = PSched because,  is
purposefully constructed so that ∀ p ′. p ′ PSched −→ p ′

= PSched:

∀ p s t. reachable s ∧ reachable t ∧ s
p∼ t ∧ s

PSched∼ t

∧ part s  p ∧ s
part s∼ t ∧ (p = PSched −→ part s

= PSched) −→ s
p∼1 t

(1)

This property we discharge using a relational proof
calculus [36], similar in style to the seminal work of
Benton [10] and other reasoning systems for confidentiality
properties [4], [5], with an automated verification condition
generator [14].

We prove Property 1 for each of the small transitions of
Figure 4(a) to conclude it holds for the coalesced transitions
of Figure 4(b).

Case 2 — part s 6 p: In this case, we consider two
sub-cases.

a) p = PSched
In this case, we prove the following condition, noting
that part s 6 p ∧ p = PSched −→ part s 6= PSched
because  is reflexive:

∀ s t. reachable s ∧ reachable t ∧ s
PSched∼ t ∧

part s 6= PSched −→ s
PSched∼ 1 t

(2.a)

This requires us to show that the scheduling partition’s
contents after a transition of another partition depends
only on its contents beforehand. All of PSched’s con-
tents remains unchanged during the execution of other
partitions except the current position of the interrupt
oracle (Section IV-B). As explained earlier, however,
the transition system of Figure 4(b) is purposefully
constructed to reflect the reality that the oracle position
after the execution of a non-scheduling partition will

always be precisely the position of the next timer
interrupt in the stream. The location of all timer in-
terrupts in the oracle stream and the current oracle
position are included in PSched’s contents, under the
assumption that all partitions are allowed to learn about
the passage of global time. Hence, Property 2.a above
follows easily.

b) p 6= PSched
In this final case we use Sewell et al.’s integrity theo-
rem [51] for seL4 (Section III-D) to prove the following
property, which says that the current transition may
not alter p at all. confidentiality-u then follows from
symmetry and transitivity.

∀ p s s ′. reachable s ∧ p 6= PSched ∧ part s
6 p ∧ (s, s ′) ∈ Step −→ s

p∼ s ′
(2.b)

Integrity holds for all of the small transitions of Fig-
ure 4(a), and thus holds for the coalesced transitions of
Figure 4(b), and so implies Property 2.b.

Of these cases, Case 1 is the most interesting and con-
sumed the bulk of the work. We briefly describe the most
illuminating aspects of this effort.

As mentioned above, to prove Property 1 across the
compound transitions of Figure 4(b), we proved it across
each of the individual component transitions of Figure 4(a).
There are essentially two distinct sets of transitions to
consider here, namely those for the scheduling partition and
those for non-scheduling partitions.

The proofs for the scheduling partition necessarily cover
the case where the scheduler does a partition switch when
the timeslice of the current partition expires. In this case,
proving Property 1 for the situation in which p is the
new partition being scheduled involves showing that the
partition switch leaves no residual information behind from
the old partition that was previously running. The ARM
implementation of seL4 maintains a fixed page of memory,
called the globals frame, that is shared between all threads
and at any point in time contains information relevant to
the currently running thread. When scheduling a thread, the
kernel writes new data to this page for the now active thread.
Part of proving Property 1 therefore involved proving that the
globals frame, which essentially moves between partitions
on each partition switch, contains no residual information
after a partition switch and so cannot serve as a covert
storage channel. The same also had to be done for the
machine context, which includes the CPU registers that are
saved and restored on kernel entry and exit respectively, as
well as all other global resources that are shared between
partitions like the system idle thread.

The proofs for Property 1 for non-scheduling transitions
mostly involve reasoning that the state read by the kernel
when performing a system call for the currently active parti-
tion is contained within the extent of the current partition—
i.e. that the kernel reads only state that it is permitted to
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reveal to the current partition. These proofs were relatively
straightforward, and benefited from substantial automation.

The exceptions to this rule, however, are system calls
that facilitate communication between partitions. One such
system call is that for sending a message on an asynchronous
endpoint, send-async-ipc. Proving Property 1 for this system
call requires considering the case in which p is the current
partition who is sending on the asynchronous endpoint. In
this case, we must prove that p’s contents after the system
call do not depend on the contents of the asynchronous
endpoint being sent on (which necessarily lives outside of p’s
extent) nor the contents of any partition who is waiting on
the endpoint in question and so who will receive the message
being sent. In other words, proving Property 1 involves
proving that the kernel’s implementation of asynchronous
endpoints has no covert storage back-channels.

The kernel necessarily reads the internal state of the
endpoint being sent on, so we must prove that the kernel
reveals none of this read state to p. This involves considering
all possible internal states that the endpoint being sent on
might be in, and proving that the effects of send-async-ipc as
observed by the sending partition are identical in all cases.
These proofs had to be performed more manually, and were
amongst the most challenging for the entire effort.

Besides the kernel’s primitive facility for interrupt deliv-
ery, which we exclude by assuming that all non-timer IRQs
are disabled, the only other problematic kernel behaviour
that we encountered during the proof was object deletion.
Specifically, seL4 deletes an object when the last capability
to that object is deleted. This capability is called final. Thus
the behaviour of the kernel, when a capability is deleted,
depends on which other partitions possess a capability to
the same object. This opens up a potential storage channel.

As with interrupt delivery, we avoided this problem by
placing an assumption on the initial configuration of the
system. We assume that when the partitions were set up that
an extra inert CNode was also created, to which no partition
was granted access, and that a copy of every subject-crossing
capability was placed into this inert CNode. A subject-
crossing capability is one that refers to a subject that is dif-
ferent from the one that possess the capability, with subject
boundaries defined with reference to the access control pol-
icy pas. Since these copies can never be deleted (because no
subject has access to the inert CNode that holds them), this
ensures that only non-subject-crossing capabilities can ever
become final. This assumption is formalised by the property
sscc, which stands for safe subject-crossing capabilities.
It is relatively easy to prove that sscc is invariant. Under
sscc, the behaviour when deleting a capability depends
only on the currently running partition, and so ensures that
confidentiality is not violated. Intuitively, this restriction
enforces that communication interfaces between partitions
should be static, because any change in that interface causes
a bidirectional information flow.

V. DISCUSSION

Having presented our proof and statement of information
flow security for seL4, we now analyse its strengths and
limitations, and relate the result to its practical significance.

The history of computer security is littered with published
security proofs that were later broken by novel exploits and
attacks. This happens when: (1) the proof is incorrect, i.e. not
logically valid, (2) the proof’s assumptions are not realistic,
or (3) the property proved was not strong enough or does
not mean what we thought it did. We consider each in turn.

A. Proof Correctness

Our proof for seL4 is machine-checked, and carried out in
the interactive theorem prover Isabelle/HOL [38], which is
a prover for higher-order logic in the so-called LCF family
with strong soundness properties: all derivations must pass
through a small proof kernel. While a defect in the Isabelle
proof kernel may permit errors in our proof, this possibility
can be made arbitrarily small by extracting the proof term
from Isabelle and running it through a series of small,
independently written proof-checking programs. Errors in
the proof itself are therefore a non-issue in practice [21].

B. Assumptions

The assumptions on which our proof rests are realistic,
and amenable to validation. Our proof makes three ex-
plicit assumptions about the seL4 configurations to which
it applies. Firstly, it assumes that the system has been
correctly configured to enforce information flow control,
by asserting that the access control policy is consistent
with the initial state and wellformed. Secondly, it assumes
that only the timer interrupt, used by the kernel to control
scheduling, is enabled. Thirdly, it assumes that there exist
inert copies of all subject-crossing capabilities to prevent
any such capability from becoming final (see Section IV-E).
The first of these is an obvious requirement. The second and
third are required to ensure that kernel functionality that is
potentially problematic for separation is never invoked. Each
of these assumptions is easily ensured by careful system ini-
tialisation, which itself is amenable to formal verification [6].
Only the latter two place limitations on the kinds of systems
that can be constructed, by forcing device drivers to poll
for interrupts and preventing inter-partition communication
channels from being destroyed respectively. Neither of these
limitations is uncommon in deployed separation kernels.

Our proof also makes a number of extra-logical assump-
tions. Many of these are inherited directly from the seL4
functional correctness proof [27] on which our result builds.
These inherited assumptions are that the C compiler and
linker used to build the kernel correctly implement the
formal C semantics [52] of the proof on the platform of
deployment (i.e. compiler and linker correctness), that the
behaviour of the deployment hardware matches the formal
machine model on which the proofs rest (i.e. hardware
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correctness), that the kernel’s 450 lines of assembly code
correctly match their specification, including that caching-
and TLB-operations are placed correctly, and that the ker-
nel’s initialisation code that runs before it hands control to
the initial thread correctly establishes the kernel invariants.

Many of these assumptions are themselves amenable
to formal verification, particularly compiler/linker correct-
ness [13], [50], assembly and context-switching code cor-
rectness [37] and correctness of the initialisation code, an
earlier version of which was verified at the design level [27].
The hardware model that we share with the seL4 functional
correctness proofs effectively assumes that DMA is disabled.

Our proof also brings a few new implicit assumptions.
Our formulation of information flow security assumes that
the global static partition schedule is allowed to be known by
all partitions. Hence it does not prevent one partition from
knowing about the existence of another, nor does it prevent a
newly scheduled partition from inferring that the previously
running partition must have exhausted its timeslice.

Our model of interrupts, described in Section IV-B, im-
plies that partitions can observe the passage of global time.
Stronger separation where time is not visible to all partitions
could be imagined, but our proof does not enforce this.

A technicality placed on the interrupt oracle by our termi-
nation insensitive formulation of information flow security is
that the oracle delivers an infinite stream of timer interrupts.
This ensures that partition steps always terminate.

As mentioned in Section I, we implicitly assume that
DMA is not enabled. We also assume that user-space threads
have direct access to only those sources of information that
we model: machine registers and memory pages mapped
with read rights, so that user-space threads may be modelled
as a deterministic function of these inputs. Thus we implic-
itly assume that the initial configuration prevents partitions
communicating via external devices.

C. Covert Channels

Our noninterference property, while true of the C imple-
mentation, is phrased against, and so has meaning at the
level of, the kernel’s abstract specification. As explained in
Section I, the formal machine model on which our proofs
rest does not model time explicitly. While exposed coarsely
through the interrupt oracle (Section IV-B), our proof says
little about covert timing channels. Timing channels must
still be analysed and mitigated using traditional means.

As mentioned earlier, our partition-based scheduling im-
plementation is known to suffer from jitter, in that it allows
a partition to overrun its timeslice by performing a system
call just before the arrival of the next timer interrupt. Other
obvious timing channels that certainly exist in the current
seL4 implementation but are likewise not addressed by
our proof include timing channels due to shared caches or
devices. Each of these has obvious mitigation strategies,
such as preventing system calls during the last n timer

ticks of a partition, flushing caches on partition switches
or dividing caches between partitions using cache colouring
and so on. However, deciding on a particular implementation
necessarily involves a trade-off between performance and
covert channel bandwidth that can only be made within the
context of a particular deployment scenario. For seL4, this
analysis can also be made with reference to sound worst-case
execution time (WCET) calculations for the kernel [12].

Our proof says much more about the absence of covert
storage channels, particularly those that might be in the
kernel. We list several channels uncovered by the proof in
Section V-D; all were eliminated either through making the
abstract specification more concrete (see below) or by adding
assumptions on the initial configuration. Our proof certainly
rules out all storage channels present in the seL4 abstract
specification, including all user-accessible physical memory,
CPU registers, and machine state such as the interrupt masks.
It also includes the abstract representation of the kernel heap
present in the abstract specification. What is more, because
our formulation of information flow security is preserved
under refinement, it also rules out user-visible kernel storage
channels below the level of abstraction of the abstract
specification, such as the raw memory of the C kernel heap.
This is because any such channel must show up as user-
visible nondeterminism exhibited by the kernel. In order to
be preserved by refinement, our information flow security
formulation tolerates no user-visible nondeterminism [36]:
such nondeterminism could always be refined by an inse-
cure implementation that resolves the nondeterminism by
examining a secret piece of state, and therefore cannot be
tolerated by a refinement-closed security condition [35].

Indeed, our proof of information flow security uncovered
a number of cases where the kernel uses state present in
the C kernel heap to make choices that are visible to user-
space, but where that state was below the level of abstraction
of the abstract specification. Each of these showed up as
user-visible nondeterminism in the abstract specification,
and was flagged by the proof as a potential covert storage
channel. To prove information flow security, we had to
make the kernel specification more concrete to remove the
user-visible nondeterminism [33], and then re-establish the
functional correctness and integrity results for the augmented
specification. The remaining nondeterminism in the abstract
specification is never revealed by the kernel to user-space—
our proof guarantees this—and includes for instance the
mapping between physical address space identifiers (ASIDs)
and the virtual pool of such ASIDs that seL4 maintains.

Our proof does not rule out the possibility of covert
storage channels that are below the level of abstraction of
the abstract specification, but that the kernel never reads. For
instance, suppose the kernel were ported to a new platform
that included extra CPU registers that the kernel never reads,
but that the port was done incorrectly such that the kernel
fails to clear these registers on a partition switch. It is
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possible our proof would still hold despite the presence
of an obvious covert storage channel. Formally, this is
captured by the hardware correctness assumption. Guarding
against it requires validating that the formal machine model
corresponds to the platform of deployment.

D. Lessons Learned

The proof was carried out over 21 months, and required
a total effort of roughly 51 person-months (pm). This
includes adding the partition scheduler (≈ 2 pm), making
the abstract specification more deterministic (≈ 23 pm), and
the information flow security proofs themselves (≈ 26 pm).

The proof of information flow security comprises 27,756
lines of Isabelle/HOL not including whitespace and com-
ments. This figure excludes the changes made to the ab-
stract specification, the repair to the functional correctness
proofs, and the necessary evolution and strengthening of the
integrity and authority confinement results needed for them
to hook up with the information flow statement.

While the total effort for information flow control is
higher than the 10 person-months reported by Sewell et al.
for integrity and authority confinement [51], it is still far
below the 25 person-years of effort required for the original
functional correctness proofs for seL4 [27]. As with the
previous proof of integrity, we gained a significant saving
in effort by being able to prove information flow security
for seL4’s C implementation over its abstract specification.
Sewell et al. estimate that proving integrity over seL4’s C
implementation directly would have required on the order
of the original 25 person-years to complete. We estimate
an even higher figure for information flow security, even
assuming an initial proof of integrity on which to build
on. Unlike with integrity, however, proving information flow
security over seL4’s abstract specification came at the cost
of having to remove much of the nondeterminism from the
abstract specification (see also Section V-C). Because the
effort required to do so (≈ 23 pm) was low in comparison,
proving information flow security over the abstract specifi-
cation was still undoubtedly the right thing to do.

The proof uncovered many channels in the kernel, some
of which were initially surprising even to those who had
worked with seL4 for years. Very early on in the proof,
the problem of seL4’s object deletion semantics (see Sec-
tion IV-E), in which an object is deleted only when the last
capability in existence to it is deleted, became apparent. That
this behaviour could give rise to a potential channel was
something that had not been explicitly considered before.
We decided to address this by adding an assumption on the
initial configuration. We were then obliged to prove that this
assumption was sufficient to remove the potential channel.

Another channel uncovered by the proof was connected
to the kernel’s interrupt delivery mechanism, namely that
the kernel does not isolate the interrupts of one partition
from another. Taking advantage of the fact that polling for

device interrupts is common practice in separation kernels,
we again decided to add the assumption that this API facility
is disabled at startup instead of rewriting seL4’s interrupt
handling code. The proof again forced us to show that this
was sufficient to remove the channel.

Other channels that the proof forced us to reason about
were anticipated from the beginning: our rules for con-
structing the information flow policy  from the access
control policy explicitly allow a two-way flow of information
between partitions connected by a synchronous endpoint, for
instance. The proof still forced us to show that synchronous
endpoints, while allowing a bidirectional flow between
sender and receiver, do not leak information to anyone else.

Similarly, the original seL4 scheduler, before partition
scheduling was implemented, was known not to enforce
isolation. We could not prove information flow security until
we had fully and correctly specified the partition scheduler
in the updated abstract specification. Proving information
flow security then required us to show that the scheduler’s
choice about which partition to schedule next can never be
affected by any other partition, as one would expect.

Apart from one minor change to simplify verification,
the partition scheduler was the only change required to the
seL4 C code, which is what we expected when we began.
It provides some evidence of the security that can be gained
by going through the process of rigorously designing and
verifying a microkernel, even without a formal proof of
security. However, our formal proof of security is what
separates optimistic hope from well-founded confidence,
grounded in formal proof.

Ultimately, our proof of information flow security for
seL4 makes seL4 no more secure than it was to begin with
(excepting the implementation changes mentioned above).
However, it provides a very strong piece of evidence about
the security of seL4 and its suitability as a separation
kernel—the strongest such piece of evidence ever con-
structed for a general-purpose kernel.

VI. RELATED WORK

seL4 is a general-purpose microkernel, whose implemen-
tation we have proved can be configured to enforce static
information flow security in the form of intransitive nonin-
terference. A number of kernels are designed specifically
to enforce information flow control, such as HiStar [54]
whose size is comparable to seL4’s. HiStar implements a
simple semantics for enforcing information flow control,
based on object labels and category ownership. However, to
our knowledge, there exists no formal proof that these rules
correctly model the behaviour of the HiStar implementation,
nor a formal connection between these rules and a high-level
security property like intransitive noninterference.

The first serious attempts to verify an OS kernel ap-
peared in the late 1970s with UCLA Secure Unix [53]
and the Provably Secure Operating System (PSOS) [17],
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and in the 1980s with KIT [11]. The design methodol-
ogy of PSOS was later used for the Kernelized Secure
Operating System (KSOS) [43] by Ford Aerospace. The
Secure Ada Target (SAT) [19] and the Logical Coprocessor
Kernel (LOCK) [49] are also inspired by the PSOS design
and methodology. The proof efforts of this time primarily
aimed at achieving functional correctness; security proofs
of the style presented here were not yet feasible. Klein [26]
provides a more comprehensive overview of this early work.
Functional correctness at the code level has only recently
been achieved by Klein et al. [27], on which we build, and
also independently by the Verisoft project [2].

Our proof further builds on the seL4 integrity proof by
Sewell et al. [51], and on the noninterference property and
associated proof calculus developed in earlier work [36].

Proofs of information flow security for models of OS
kernels and hypervisors are not new. Below, we summarise
other recent work with similar goals. To our knowledge, ours
is the only mechanised proof that applies to the C code of a
general-purpose OS kernel/hypervisor. The C code level is
significant, because no manual checking is needed to verify
the validity of the proof for the running artefact and it is easy
to validate that the proof still applies after code changes. The
proof check is mechanical and fully automatic, and all steps
from the C code on down are automatically generated by
compiler and linker, so any remaining errors are systematic
and not subject to error-prone human validation for every
new deployment or code version.

The work that comes closest to the one presented here is
INTEGRITY-178B, which is a real-time operating system
for which a machine-checked information flow proof has
been completed [44]. However, unlike ours, this proof ap-
plies to a hand-written, detailed formal model of the kernel
that is not linked to its implementation by formal proof but
instead by careful informal argument. This leaves open the
possibility of implementation errors in INTEGRITY-178B
that invalidate the proof of isolation, and risks that the
proof is not adequately updated when code or API change.
The isolation proved for INTEGRITY-178B is based on
the GWVr2 property [18], which bears similarities to our
formulation of information flow security for seL4. The exact
relationship between the two deserves further study.

The Mathematically Analyzed Separation Kernel (MASK)
was also proved to enforce a notion of information flow
control [31], [32]. Their property resembles traditional un-
winding conditions for noninterference, and was shown
to hold for a low-level design model that is close to an
implementation. Again, it was ultimately connected to the
C implementation only by manual translation. Like many of
the other kernels summarised here, MASK is not a general-
purpose kernel such as seL4, but instead designed primarily
to enforce static separation. This means that the verification
of seL4 is more complex and, at the same time, that more
flexible kernel services are available inside partitions.

Heitmeyer et al. [22], [23] present a verification of
separation for an unnamed separation kernel, whose main
purpose is to enforce data separation. Their formulation
of separation involves a number of different properties:
no exfiltration, no infiltration, temporal separation, control
separation and kernel integrity. We can derive analogues
for each of these properties for seL4 from our proof of
information flow security. No exfiltration is a consequence
of integrity; no infiltration a consequence of confidentiality;
temporal separation corresponds to an absence of residual
information on each partition switch, which is required by
our formulation of nonleakage (see Section IV-E); control
separation requires that only one partition executes at a time,
and for seL4 is a consequence of functional correctness; and,
finally, kernel integrity is also a consequence of functional
correctness for seL4. They give a machine checked proof for
an abstract model of the separation kernel, which is related
to its C implementation by a pen-and-paper proof. The size
of the separation kernel was reported at 3,000 lines of C and
assembly, which is under a half the size of seL4.

Hardin et al. [20] verified information-flow control proper-
ties of the AAMP7 microprocessor [45], which implements
the functionality of a simple static separation kernel in
hardware. Similar to other work above, the proof, based on
a comparatively detailed model, is connected to the (in this
case micro-)code by careful manual inspection.

Krohn and Tromer [28] presented a pen-and-paper proof
of noninterference for the Flume operating system. This
proof applied to a very abstract CSP [24] model of the Flume
system, unconnected to its implementation by proof. Unlike
seL4, Flume is Linux-based and so includes the entire Linux
kernel as part of its trusted computing base (TCB).

Recently, Barthe et al. [8] presented a formalisation and
machine-checked proof of isolation for a high-level idealised
model of a hypervisor. More recent work in this vein [9] has
also looked at analysing cache leakage, which our proof does
not, but again only for an idealised hypervisor model.

VII. CONCLUSION

We have presented the most detailed and extensive
machine-checked formal verification of information flow
security ever performed for a general-purpose OS kernel,
specifically a proof of intransitive noninterference for seL4.
Our proof holds for seL4’s C implementation, and builds
on the previous verification results for seL4 that established
functional correctness of its C implementation and integrity
enforcement. Taken together with these previous results, the
verification for seL4 now covers properties from the level
of integrity and confidentiality, over functional correctness,
down to the C implementation, accomplishing a 30-year
stated research goal of the field.

While this proof, like any other assurance mechanism,
has limitations such as making no claims about timing
channels, a number of the current proof assumptions can be
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strengthened. For instance, recent work on eliminating the
compiler and linker assumption by extending the functional
correctness proof to the binary level [50] could be adapted to
automatically derive binary-level noninterference for seL4.

The additional effort for proving noninterference here was
much reduced in comparison to the effort for the previous
functional correctness proof, but still substantial for many
applications. The main application domain of kernels like
this is high-assurance systems, such as space, aviation,
vehicles, and critical infrastructure, where expending this
kind of effort is justified to save lives and prevent substantial
damage. However, seL4 is a general, high-performance
microkernel, capable of hosting entire legacy applications
and operating systems like Linux. Because this verification
need be performed only once for each architecture, nothing
prevents us using this kind of system far more broadly.

While a result like this has intrinsic value on its own,
we see it merely as one step in a bigger vision. The formal
statement of security mechanism enforcement is a tool for
reasoning about the security goals of entire systems built on
top of the OS kernel. By having this formal tool available,
such reasoning now becomes feasible for the first time.
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