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Abstract—Worst-case execution time (WCET) analysis of real-
time code needs to be performed on the executable binary code
for soundness. Determination of loop bounds and elimination of
infeasible paths, essential for obtaining tight bounds, frequently
depends on program state that is difficult to extract from static
analysis of the binary. Obtaining this information generally re-
quires manual intervention, or compiler modifications to preserve
more semantic information from the source program.

We propose an alternative approach, which leverages an exist-
ing translation-validation framework, to enable high-assurance,
automatic determination of loop bounds and infeasible paths. We
show that this approach automatically determines all loop bounds
and many (possibly all) infeasible paths in the seL4 microkernel,
as well as in standard WCET benchmarks which are in the
language subset of our C parser.

I. INTRODUCTION

Critical real-time systems must be assured to both func-
tional correctness as well as timely operation. Functional
correctness is usually assured by traditional means such as
testing, code inspection and controlled development processes
[NIS99], [RTC92], [ISO11], or more recently by formal meth-
ods [RTC11]. The highest assurance is obtained by formal
correctness proofs based on theorem proving, as was done
with the seL4 microkernel [KEH+09]. Functional verification
is generally performed on the source-code level (i.e. the C
or other implementation language) and then translated into
a binary using a trusted compilation tool chain or even a
verified compiler [Ler09] guaranteed to produce correct code.
Alternatively, we have recently shown that it is possible to
prove the correctness of the translation without requiring a
trusted compiler [SMK13].

Timeliness requires, among other things, sound estima-
tion of worst-case execution time (WCET). This is generally
performed by static analysis of the binary code, in order
to account for code changes by the compiler. The process
typically first extracts a control-flow graph (CFG) from the
binary, which is used to generate candidate execution paths.
The execution time of a path is estimated (conservatively) with
the use of a micro-architectural model of the hardware.

However, this requires first determining safe upper bounds
for all loop iterations. Furthermore, many candidate execution
paths turn out infeasible (depending on branch conditions
which are mutually exclusive) and must be eliminated to avoid
an excessively pessimistic WCET. Frequently, loop bound de-
termination and infeasible path elimination is done by manual

inspection, but this is tedious, error-prone and difficult to
validate, and thus unsuitable for safety-critical code.

For high assurance, we require an entirely automatic and
trustworthy means of discovering loop bounds and path in-
formation in the binary. While there is a wealth of literature
on using static analysis to derive loop bounds on binaries,
getting complete coverage of all loops is impossible in theory
(equivalent to the halting problem) and difficult to approximate
in practice. An alternative approach is to instrument the
compiler, and pass information across from the source side.

We propose a different approach: leveraging the machinery
we have developed for proving functional correctness, in order
to enable a high-assurance determination of loop bounds and
infeasible paths required for WCET estimation. Specifically,
we reuse the translation validation (TV) apparatus we de-
veloped for proving that the compiler has correctly compiled
the seL4 source code [SMK13]. It discovers a source-to-
binary relation without requiring any compiler adjustments.
We assume some safety and correctness conditions of the C
code, which in the case of seL4 are implied by its formal
verification, and in other cases result from safe programming
practice.

Through the TV relation, our WCET analysis can make
use of some source-level information missing in the binary,
such as pointer aliasing information. We can also manually
intervene in the process by annotating the source code with
certain special comments. These are ignored by the compiler,
but are picked up by the TV and WCET tools as additional
assumptions. They are proved as additional obligations in the
functional correctness proof.

In the case of seL4, many useful properties have already
been proved and are immediately available to the WCET anal-
ysis; any additional annotations create new proof obligations
which must be discharged in the existing framework (and with
the help of previously proved invariants). The result has the
same high assurance as the formal correctness proof.

The approach is not limited to functionally-verified code
such as seL4. Any code that is in the subset understood by our
C parser can be analysed. The framework’s assumptions on the
C subset, especially the absence of unspecified or undefined
behaviour, can be verified using model checking. Obviously,
manual annotations are of lesser assurance if not formally
checked.

We make the following contributions:
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• high-assurance construction of the binary control-flow
graph, with a proof of correctness of all but the final
simplification (Section III-A).

• WCET analysis supported by a translation-validation
framework, allowing C-level information to be used in
computing provable loop bounds and infeasible paths
(Sections III-B–III-D);

• computation of all loop bounds needed for WCET of
the seL4 kernel with one-off source-level assertions,
but no manual inspection of the binary program (Sec-
tion IV-A), and similarly elimination of infeasible paths
(Section IV-C);

• demonstration that the approach is applicable to code that
is not formally verified, by analysing a subset of the
Mälardalen benchmarks (Section IV-B).

II. BACKGROUND

A. Determining loop bounds and infeasible paths

Wilhelm et al. surveyed the wealth of WCET literature
[WEE+08]. Since then, Rieder at al. have shown that it is
straight-forward to determine some loop counts at the C level
though model checking [RPW08]. Other authors use abstract
interpretation, polytope modeling and symbolic summation to
compute loop bounds on high-level source code [LCFM09],
[BHHK10]. Attempting to automatically find a correspondence
of source-level results in the compiled binary, in the presence
of compiler optimisations, is difficult and makes the analysis
dependent on compiler correctness, which is what we aim to
avoid.

The aiT WCET analyser uses dataflow analysis to identify
loop variables and loop bounds for simple affine loops in
binary programs [CM07]. The SWEET toolchain [GESL06]
uses abstract execution to compute loop bounds on binaries,
and is aided by tight integration with the compiler toolchain,
which improves the knowledge of memory aliasing, but this
again implies relying on the compiler. The r-TuBound tool
[KKZ11] uses pattern-based recurrence solving and program
flow refinement to compute loop bounds, and also requires
tight compiler integration.

Some of the same techniques are used for eliminating
infeasible paths, e.g. abstract execution [GESL06], [FHL+01],
with the same limitations as for loop-count determination. We
earlier used binary level model checking [BH13] to automat-
ically compute loop bounds and validate manually specified
infeasible paths. We then used the CAMUS algorithm for
automating infeasible path detection [BLH14]. However, this
work was inherently limited to information that could be
inferred from an analysis of the binary, and failed to determine
or prove loop bounds that required pointer aliasing analysis.

B. Chronos

For WCET analysis we use the Chronos tool [LLMR07],
which is based on the implicit path enumeration technique
(IPET), to perform micro-architectural analysis and path anal-
ysis. The attraction of Chronos is its support for instruction
and data caches, a flexible approach to modeling processor
pipelines, and an open-source license. It transforms a simpli-
fied CFG, with loop-bound annotations, into an integer linear
program (ILP). We solve this using an off-the-shelf ILP solver

– IBM’s ILOG CPLEX Optimizer – to produce the estimated
WCET. Infeasible path annotations can generally be expressed
as ILP constraints.

In earlier work [BSH12] we adapted Chronos to support
certain ARM microarchitectures for the WCET analysis of
seL4. While seL4 can run on a variety of ARM- and x86-
based CPUs, we target our analysis at the Freescale i.MX 31
for reasons enumerated before [BSH12], in particular its cache-
pinning feature, which is unavailable in later ARM processors.
The i.MX31 contains an ARM1136 CPU core clocked at 532
MHz, it has split L1 instruction and data caches, each 16 KiB
in size and 4-way set-associative. Since the processor uses
random cache-line replacement, we conservatively model the
caches as direct-mapped caches of the size of one way (4 KiB).
We also disable the L2 cache, since it significantly increases
the L1 miss penalty and the WCET.

C. The seL4 operating-system kernel

seL4 is a general-purpose OS microkernel implemented
mostly in C with a minimum of assembly code. In line with
the tradition of high-performance L4 microkernels [EH13],
seL4 only provides a minimal set of mechanisms, including
threads, a simple scheduler, interrupts, virtual memory, and
inter-process communication, while almost all policy is imple-
mented by user-mode processes. seL4 uses capability-based
protection [DVH66], [BFF+92] and a resource-management
model which gives (sufficiently privileged) user-mode man-
agers control over the kernel’s memory allocation – this is key
to its strong spatial isolation.

The general-purpose design of seL4 means that the verified
kernel can be adapted to support a broad class of use cases,
including use as a pure separation kernel, a minimal real-time
OS, a hypervisor supporting multiple Linux instances, a full-
blown multi-server OS, or combinations of these.

Mixed-criticality workloads are a target of particular in-
terest. Such systems consolidate mission-critical with less
critical functionality on a single processor, to save cost, weight
and volume, and improve software and certification re-use
[BBB+09]. Examples include the integrated modular avionics
architecture [ARI12], and the integration of automotive con-
trol and convenience functionality with Infotainment [HH08].
These systems require strong spatial and temporal isolation
between partitions, for which seL4 is designed.

The main attraction of seL4 is that it has been extensively
formally verified, with formal, machine-checked proofs that
the kernel application binary interface (ABI) enforces integrity
[SWG+11] and confidentiality [MMB+13], that the ABI is
correctly implemented at the C level [KEH+09], and that the
executable binary produced by the compiler and linker are
a correct translation of the C code [SMK13]. This make it
arguably the world’s highest-assured OS. Its WCET analysis
[BSC+11] is a step towards supporting mixed criticality sys-
tems, although more work remains to be done on its scheduling
model [LH14].

The kernel executes with interrupts disabled, for (average-
case) performance reasons as well as to simplify its formal
verification by limiting concurrency. To achieve reasonable
WCET, preemption points are introduced at strategic points



Access Control

Abstract Speci cation

Executable Design Spec

Semantic C Level

Binary Semantics

C Code

Binary

C Parser

Decompiler

Proof
Formal

Code

Compiler

Tool

p
re

v
io

u
s
 s

e
L
4

 w
o

rk

Fig. 1. The seL4 functional correctness stack.

[BSH12]. These need to be used sparingly, as they may sub-
stantially increase the code complexity and the proof burden.
A configurable preemption limit (presently set to 5) controls
how many preemption points a kernel execution must pass to
trigger preemption. Decreasing this limit improves the worst-
case execution time of the system, at the expense of average
case performance.

When a preemption point is triggered, seL4 checks for
pending interrupts. If there are any, the current operation
is exited. For verification reasons this is done by passing
exceptional return values from all preemptible functions rather
than by using a language exception mechanism like exit
or longjmp. The interrupt is then handled, usually resulting
in a context switch to its user level handler. The preempted
operation resumes as a fresh system call the next time the
preempted task is scheduled. Since the kernel execution ends
on preemption, this makes the worst-case response time of
seL4 equal to its worst-case remaining execution time from
the point at which a pending interrupt is first raised.

This preemption mechanism is straightforward to encode as
an ILP constraint. We can specify nonsense bounds (109) for
all preemptible loops and instead restrict the overall number
of visits to all preemption point sites to the configurable limit,
i.e. we assume a pending interrupt will be detected.

Our previous work focussed on aggressively optimising
the kernel for latency [BSC+11], [BSH12]. Among other
measures, we placed additional preemption points in long
running operations. In contrast, our intention here is to develop
a high-assurance analysis process, and leave the optimisation
of the WCET to future work. Thus we apply our approach
to the most recent verified version of seL4, which lacks these
unverified modifications. We note that the number of loops
to analyse is significantly larger than in our previous work
(which used a non-verified kernel fork), where we had set the
preemption limit to one.

D. seL4 verification framework

The verification of the functional correctness of seL4
comprises over 200,000 lines of proof script, manually written
and automatically checked by the theorem prover Isabelle/HOL
[NPW02]. The proof contains four models of the behaviour
of the kernel, as sketched in Figure 1. The most abstract
one (access control) is manually written in Isabelle, and
the most detailed one (semantic C) is derived from the C

source code of the implementation. There are three main proof
components: a proof that a number of crucial invariants are
maintained, and two proofs of refinement which establish that
behaviours observed of the lower models must be subsets of
those permitted by the higher models.

The C-level model is created by a C-to-Isabelle parser
[TKN07]. This produces a structured program in the Isabelle
logic which roughly mirrors the syntax of the input C program.
The parser adds a number of assertions which make explicit
the correctness requirements of the C program, for instance
involving pointer alignment and the absence of signed over-
flow. These constraints are roughly those that are prescribed
by the C standard, with some additions for formal reasons, and
some requirements of the standard relaxed to allow the kernel
to implement its own memory allocator. Note that all these
assumptions are proved correct for the seL4 source.

The translation validation process extends this verification
stack, but uses automatic proofs in an SMT-based logic rather
than manual proofs inside Isabelle/HOL.

E. Decompilation of binary code into logic

The decompiler of Figure 1 is part of a collection of formal
tools based on the Cambridge ARM ISA specification [FM10].
The specification models the expected behaviour of various
ARM processors in the theorem prover HOL4 [SN08]. The
key feature of these models is that they have been extensively
validated by comparing their predictions to the behaviour of
various real silicon implementations.

The decompiler builds on a tool which specifies what the
effect of various instructions will be. This transformation also
performs a HOL4 proof that the specification is implied by
the CPU model. The decompiler stitches these instruction
specifications together to produce a structured program which
specifies the behaviour of a function in the binary. Crucially,
the stitching process preserves the proofs. It results in a
program specification, as well as a proof that the CPU would
behave according to that specification, if it were to start
executing the given binary at the given address.

In this project we use a variant of the decompiler which
produces an output program in the graph-based language we
describe below in Section II-F. Each function in this program is
structurally identical to the control-flow-graph of the relevant
function in the binary, including sharing the same instruction
addresses.

F. Translation validation

The proof of the correctness of the translation step from
C to binary [SMK13] – the lowest level model of the seL4
functional verification – uses a translation validation (TV)
toolset that builds on the decompiler introduced above. The
proof process is sketched in Figure 2. The starting point is the
C program, parsed into Isabelle/HOL using the semantics of
Tuch et al. [TKN07].

The overall TV approach is to transform both the C and the
binary code into representations at the same abstraction level,
i.e. a common intermediate language, and then prove corre-
spondence function-by-function. The C program is transformed
into a graph language with simpler types and control flow. The
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decompiler also transforms the binary into the same language.
Both transformations construct proofs (in Isabelle/HOL and
HOL4) that the semantics are preserved in the conversion.

Like machine code, statements in the graph language have
explicit addresses and control flow may form an arbitrary
graph. A program may manipulate an arbitrary collection of
variables, with most programs having a “memory” variable
in addition to variables representing registers or local vari-
ables. The graph language provides a mechanism for asserting
a boolean property, which allows the correctness assertions
(alignment etc.) made by the C-to-Isabelle parser and the
decompiler to be expressed at this level. The C assertions,
which have been proved in the previous verification work,
become assumptions of the proof process, so the TV toolset
may assume non-overflow conditions much like the compiler
does. The assertions in the binary become proof obligations.

The core of the TV process is a comparison of graph-
language programs. For acyclic (loop-free) programs, this
checks that the programs produce identical outputs (memory
and return values/registers) given the same inputs (memory and
argument values/registers). The calling convention specified
by the ARM architecture defines the expected relationship
between arguments and registers, etc. When loops are present,
the tool must first search for an inductive argument which
synchronises the loop executions, then check that the argument
implies the same input/output relation. Both the check process
and the search process use SMT solvers to do the heavy lifting.
This process is described in detail elsewhere [SMK13].

III. WCET ANALYSIS

The design of the WCET analysis process is shown in
Figure 3. We extend the TV framework to extract the control-
flow graph (CFG) of the binary, and to provably discover loop
bounds. Chronos then reduces the WCET problem to an integer
linear program. We solve the ILP and pass the worst-case path
of execution to the infeasible-path module to be refuted. Given
any refutations, we find a new worst-case path, continuing until
the candidate path cannot be refuted. This repeated refutation
approach is presented in detail by Knoop et al [KKZ13], who
discuss it in detail.

The rest of this section explains the various components in
detail.
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Fig. 3. Overview of dataflow in the analysis.

A. CFG conversion

In general, reconstructing a safe and precise binary CFG
is difficult and error prone due to indirect branches [BHV11],
[KZV09]. In previous work, we reconstructed the CFG from
seL4’s binary using symbolic execution [BSC+11]. The sound-
ness of the CFG so obtained, and thus the resulting WCET
estimation, depended on the correctness of the symbolic exe-
cution analysis.

We now present a high-assurance approach to construction
of the CFG. The decompiler generates the graph-language
representation of the binary program, together with a proof (in
HOL4) that the representation is accurate. The representation
consists of a collection of graphs, one per function, with both
the semantics and the binary control flow embedded in the
graph, and with function calls treated specially.

Chronos, in contrast, expects a single CFG in which
function-call and -return edges are treated specially. The two
representations are logically equivalent, and we perform the
conversion automatically. The conversion also gathers instruc-
tions into basic blocks and removes some formal features, such
as assertions that are not relevant to the binary control flow.

In principle, the conversion could be done inside the
decompiler, and we could formalise the meaning of the CFG
and prove it captured the control paths of the binary. However,
this makes the relationship between the decompiler and TV
framework more complicated, and we leave this to future work.
Instead we perform the simplification inside the TV framework
for now. While this means that the CFG is not proved correct,
it is still highly trustworthy, since the most difficult phases
have been performed with proof.

B. Discovering and proving loop bounds

We employ two primary strategies for discovering loop
bounds on the binary, both utilise features of the existing TV
toolset. The first constructs an explicit model of all possible
iterations of the loop, while the second abstracts over the effect
of loop iteration.

Consider this simple looping program:

for (i = 0; i < BOUND; i ++) {



x += val[i];
/* ... */

}

The explicit strategy for discovering a loop bound is to have
the TV toolset build an SMT model1 of the program including
values of i, x, etc, for each iteration of the loop up to some
bound. The model includes state variables for each step in the
program, and also a path condition. Loop bounds can be tested
by testing the satisfiability of various path conditions, e.g. a
bound of 5 will hold if the path condition of the first step of
the 6th iteration of the body of the loop is unsatisfiable.

This approach is simple and fairly general. We can analyse
complex loops by considering, in SMT, all possible paths
through them. However the size of the SMT model expands
linearly with the size of the hypothetical bound. As SMT
solving is, in general, exponential in the size of the problem,
this approach is limited to loops with small bounds. In practice
we have been able to find bounds up to 128 this way.

If we suppose BOUND in the loop above is 1024, the explicit
approach would be impractical. However, it is intuitively clear
that this simple loop stops after 1024 steps, because variable
i equals the number of iterations (minus 1) and must be less
than 1024. The abstract strategy replicates this intuition.

For this strategy we have the TV toolset generate an SMT
model for loop induction. This includes all the program up
to and including the first iteration of the loop, and then fast-
forwards to some symbolic n-th iteration, and includes the
next iteration or two after that. The variable state at the n-th
iteration is unknown. In the above example we can prove that
i is one less than the iteration count. We prove that it is true
in the initial iteration, and then, assuming that it is true at the
symbolic iteration n, we prove it is true at iteration n+1. This
is a valid form of proof by induction, and is closely related
to the induction done by the TV toolset for matching related
loops in the source and binary.

This strategy applies equally well at the binary level.
Consider this disassembled binary code fragment:

e1a00004 mov r0, r4
ebfffffe bl 0 <f>
e2844004 add r4, r4, #4
e3540c01 cmp r4, #256 ; 0x100
1afffffa bne 4568 <test+0x8>

This code is a loop which increments register r4 by 4
at every iteration. We can prove by induction in the above
manner that the expression r4−4n is a constant, where n is the
iteration count as above.2 We reuse a preexisting TV feature
which discovers these linear series and sets up the inductive
proofs.

The above example is complicated by the looping condi-
tion, which is r4 != 256 rather than r4 < 256. We show
the additional invariant r4 < 256 by induction. The abstract

1Here and later we use “SMT model” to mean a set of definitions in the
SMT language, used to phrase a satisfiability query, rather than a satisfying
model of such a query.

2This expression is constant at each address in the loop. If the initial value
of r4 were 4, the expression would be evaluate to the constant 0 whenever
execution was at the first two instructions, but 4 after the add instruction.

strategy contains a feature for guessing inequalities of this
form that may be invariants. It assembles these inequalities
by inspecting the linear series and the loop exit conditions,
and then discovers which of its guesses can be proved by
induction. In this example, the proof requires the knowledge
that the initial value of r4 was less than 256 and divisible by
4.

Once we have the inequality r4 < 256, the loop bound of
64 can be proved easily. Any larger bound will also succeed,
which is convenient, because it allows us to refine any bound
we guess down to the best possible bound by means of a
binary search. The SMT model does not change from query
to query during this search, only the hypothesis that fixes n
to some constant. SMT solvers supporting incremental mode
can answer these questions very rapidly.

These two strategies do all the work of finding loop bounds,
but as presented are not powerful enough for all loops. We
extend them in three ways to cover the remaining cases: (i)
using C information, (ii) using call-stack information, and (iii)
moving the problem onto the C side.

The first extension, using C information, exploits correct-
ness conditions in the C program while reasoning about the
binary. This works because the TV proof establishes that each
call to a binary symbol in the trace of execution of a binary
program has a matching C function call in a matching trace
of C execution.

Consider, for instance, these C and binary snippets:

int
f (int x, int y) {

x += 12;
/* ... */
return 2;

}

0000f428 <f>:
f428: e92d4038 push {r3, r4, r5, lr}
f42c: e1a05001 mov r5, r1
f430: e280400c add r4, r0, #12

...
f464: e3a00002 mov r0, #2
f468: e8bd4038 pop {r3, r4, r5, lr}
f46c: e12fff1e bx lr

The calling convention relates visits to the two functions
f. A binary trace in which address 0xf428 is visited three
times must be matched by a C trace in which f is called three
times, with the register values r0, r1 matching the C values x,
y at the respective calls. The TV proof has already established
this, so the WCET analysis can consider this C execution trace
simultaneously to the binary execution trace. Concretely this
means that SMT problems will contain models of both binary
f and the matching C f. The correctness conditions of the C
f will be taken as assumptions. The x += 12 line in f above,
for instance, tells us that adding 12 to either x or r0 must not
cause a signed overflow.

The second extension, use of call-stack information, is
useful in the case where the bound on a loop in a function is
conditional on that function’s arguments. Common examples
include memset and memcpy, which take a size parameter, n,
which determines how many bytes to loop over. To bound the



loop in memset, we must look at the values given to n at each
of the call sites of memset. We might in fact have to consider
all possible call stacks that can lead to memset. Concretely
this means that the SMT model will also include a model of
the calling function up to the call site, and the input values to
memset will be asserted equal to the argument values at the
call site. This additional information then feeds into the two
core strategies above.

The final extension, moving the problem to the C side,
maximises use of the TV framework, by asking it to relate
the binary loop to some loop in the C program. If the TV
toolset can prove a synchronizing loop relation, that implies
a relation between the C bound and the binary bound. The
explicit and abstract strategy can then be applied to the C loop
to discover its bound. It is convenient that both programs are
expressed in the same language inside the TV framework, so
we can use exactly the same apparatus. Finding the C bound
will sometimes be easier because dataflow is more obvious in
C. It also ensures that assertions placed in the body of the C
loop will be directly available in computing the loop bound.

By default the apparatus will set up an SMT model which
includes the target function and the matching C function. If the
function is called at a unique site, we also include its parent
and its parent’s matching C function. If no bound is found
directly, we try to infer a bound from C. If this also fails, we
add further call stack information as necessary, by considering
all possible call stacks that can lead to our loop of interest.

C. Refuting infeasible paths

Refuting an impossible execution path amounts to express-
ing the conditions that must be satisfied for the execution to
follow that path, and testing whether all those conditions are
simultaneously satisfiable. The TV toolset reasons about path
conditions by converting them into boolean propositions in the
underlying SMT logic. It is then straightforward to have the
SMT solver test whether a collection of path conditions is
possible.

To narrow the search space, we only attempt to refute path
combinations that appear in a candidate execution trace. The
final ILP solution produced by running Chronos and CPLEX
specifies the number of visits to each basic block, and the
number of transitions from each basic block to its possible
successors. Since some basic blocks will be visited many
times, with multiple visits to their various successors, we may
not be able to reconstruct a unique ordering of all blocks in
the execution. Instead, we collect a number of smaller arcs of
basic blocks that must have been visited together in a single
call to a function. We can also link some of these arcs with
arcs that must have occurred in their calling context.

The refutation process then considers each of these arc sec-
tions, and checks whether they are simultaneously satisfiable as
described above. If the combination is unsatisfiable, we reduce
it to a single minimal unsatisfiable combination, and export an
ILP constraint equivalent to this refutation.

This approach is simpler than our previous work, where
we consider much larger sets of path conditions and use the
CAMUS algorithm to find all minimal conflicts [BLH14]. The
trade-off is that, after eliminating refuted paths, we have to

re-iterate the process on the next candidate ILP solution. We
have not yet investigated which of these strategies is the most
efficient and there is almost certainly room for significant
optimisation.

D. Manual intervention: Using the C model

The techniques described in the two preceding subsections
discover loop bounds and refute infeasible paths automatically.
In cases where these fail, we can manually add (and prove)
relevant properties at the C level. Besides the assurance gained
by the formal, machine-checked proofs, our ability to leverage
properties that can be established at the C level is a powerful
tool that most distinguishes our approach from previous work,
including our own [BLH14].

These C level correctness conditions can be assumed in
the WCET process. In Section III-B we discussed how C
correctness conditions, such as integer non-overflow, can be
assumed in the WCET process, by constructing simultaneous
SMT models of the C and binary programs. Manual assertions
added to the C program appear in exactly the same manner as
these standard assertions arising from the C standard. However,
the manual assertions we supply can be directly related to the
WCET problem.

For ordinary (application) programs, such as the
Mälardalen benchmarks, we assume that the source conforms
to the C standard, specifically that it is free of unspecified or
undefined behaviour. This allows the TV toolset to assume
some pointer-validity and non-aliasing conditions which derive
from the C standard, but would be hard to discover from the
binary alone. While this implies a potentially incorrect WCET
for non-standard conformant programs, standard conformance
is essential for safety-critical code, and can (and should!) be
verified with model-checking tools.

Additionally, the C-to-Isabelle parser provides syntax for
annotations in the form of specially-formatted comments,
which add assertions to the C model. This feature is used occa-
sionally in seL4 for technical reasons to do with the functional-
verification approach. Here we reuse the annotation mechanism
to explicitly assert information which we know will be of use
to the loop-bound and infeasible-path modules. The assertions
create proof-obligations in the functional-correctness chain,
which we discharge by extending the hand-written Isabelle
proofs about the kernel. The same mechanism can be used
for application code, if the developer is certain about a certain
assertion (eg. by having proved it through model checking).

With this manual (but safe) intervention, we can calculate
and prove all loop bounds in the seL4 kernel binary, and
effectively eliminate the most relevant infeasible paths. We
add three kinds of assertions to achieve this.

1) We add an assertion that the “length” field of a temporary
object is at maximum 16. In principle this information
exists in the binary, and is unavailable to the WCET
process only because we limit the extent to which we
track information across function calls. In practice it
was much simpler to assert this information, and do the
equivalent propagation within the manual proofs.

2) We assert that each iteration of the capability-lookup
process resolves at least one bit of the user’s capability



descriptor. The kernel uses a guarded page table [Lie94]
for storing capabilities, which allow the number of bits
resolved to be user-configured. It is a proved kernel
invariant that the user can never configure this value to
zero, thus, the loop terminates. The assertion is trivial
to prove from this invariant, and makes the invariant
immediately available to the WCET apparatus.

3) We assert that certain capability cleanup operations cannot
trigger any expensive object cleanups during the exchange
of so-called reply capabilities. This is the same infor-
mation that we have in previous work provided to the
compiler to improve optimisation [SBH13].

We insert one further assertion to force a configurable
limit on the size of objects in the present kernel version. The
seL4 kernel allows a user level memory manager to use the
largest available super-page objects (16 MiB) if it has access
to sufficiently large blocks of contiguous memory. Zeroing or
cache-cleaning these pages are very long running operations.
The (trusted) initial user-level resource manager can avoid this
issue, by inentionally fragmenting all large memory regions
down to smaller chunks. Restricting the maximum object size
might conceivably complicate the business of other resource
managers, but has very little effect on application complexity
or performance.

The clean way to resolve this issue would be to introduce
preemption points into those long-running kernel operations, as
we had done on a fork of the kernel in earlier work [BSH12].
However, this introduced significant complexity, which meant
that the respective patches have to date not been included into
the verified version of the kernel. In the present work we are
targeting the verified kernel version, so we instead choose to
enforce this slight restriction, and leave re-introducing further
preemption points to future work.

This results in the following assertion:

4) We specify a maximum object size and assert that a num-
ber of creation, zeroing and cache-cleaning operations
cover regions do not exceed this maximum size.

We presently set the maximum kernel-object size to
64 KiB. This object size limit is “ghost data”, in the sense
that it does not appear anywhere in the actual C program or in
the binary, only in the Isabelle model of the C program. The
kernel does not ensure that this limit ever comes into force,
instead, it should be thought of as a key step in configuring
a safe real-time system. However, we add a proof that this
invariant, once true, will remain valid for the lifetime of the
system.

Should the system configuration violate the constraint, the
system’s operation will still be functionally correct, but the
WCET bounds are no longer guaranteed.

Note that since all four types of manual assertions are
specified at the source level, they will still be available if
the kernel is re-compiled. A possible exception is where the
compiler’s inlining changed (eg. by a new compiler version
or different compilation options), which might move assertion
information out of the necessary context. Clearly, the WCET
analysis must be performed on the actually-deployed binary, it
is obviously unsafe to assume that an analysis remains valid
after re-compilation.

IV. EVALUATION AND DISCUSSION

A. Loop Bounds in seL4

We successfully compute the bounds of all 67 bounded
loops in seL4, which is in contrast to our earlier work, which
only succeeded on 18 of 32 loops3 (56%) [BH13]. A further
5 loops in the binary contain preemption points and have no
relevant bound, these are bounded by the preemption limit, as
discussed in Section II-C.

The seL4 version we study is the current mainline verified
kernel, which includes our WCET assertions. We make one
change to the kernel’s standard build-time configuration, to
adjust a configurable limit called the “fan-out limit” to the
minimum. This avoids an issue involving a nested loop with
a complex bounding condition. 4 We compile the kernel with
gcc-4.5.1 with optimisation setting -O2, which is the default
for building the kernel.5

The success rates of the strategies discussed in Sec-
tion III-B are listed in Table I. The explicit strategy discovers
smaller bounds, the largest being 6, and the abstraction strategy
finds all the higher bounds, which vary from 16 up to 8192.
There is one outlier, a bound of 32 discovered by the explicit
strategy on the C program. This is the capability lookup loop,
manually annotated, which we discussed in Section III-D. This
bound is transferred across the TV relation to bound the binary
loop implicitly.

For comparison to previous work, we reran the analysis
with all C-level information discarded, only using information
available in the binary. The results are also in Table I. In
this mode, some loop bounds are discovered by considering
multiple possible call stacks individually.6 This approach is
available as a last resort in the analysis. We speculate the
assertions we provide through the C code make this step
redundant. In total we find 47 of 67 bounds (70%) using only
information from the binary. This is a slight improvement on
the level of coverage we achieved in our earlier work (56%),
probably because the abstract strategy can discover some large
bounds more easily than our previous approach. The reason the
binary-only strategies fail to find the remaining bounds are the
same as in our earlier work: inability to perform a memory
aliasing analysis on the binary and the lack of an invariant
maintained by a loop’s environment.

TABLE I. LOOP BOUNDS FOUND BY DIFFERENT STRATEGIES.

This work Prior work
Full analysis Binary-only [BH13]

Explicit model 22 33% 13 19% N/A N/A
Abstraction 44 66% 28 42% N/A N/A
From C 1 1% N/A N/A N/A N/A
Call cases 0 0% 6 9% N/A N/A
Total found 67 100% 47 70% 18 56%
Not found 0 0% 20 30% 14 44%

3Note that the total number of loops here is higher than in our earlier
work. This results from this work targeting the verified kernel, and thus using
preemption points less aggressively, see Section II-C.

4The minimum setting, 1, eliminates the outer loop entirely.
5Higher optimisation settings usually result in larger binaries, and in-

struction cache pressure is known to be an important factor in microkernel
performance.

6The different cases are solved by some combination of the two main
strategies. Further breakdown is elided.



The advantages of source-level annotation became obvious
when re-running the analysis after not touching it for about five
months. During that time the kernel evolved, including a major
maintenance patch which adjusts over 500 lines. Since the
source level annotations were preserved, the automatic analysis
immediately rediscovered all but one of the loop bounds in
the kernel binary. The missing bound was because we had
forgotten to adjust the kernel build parameters as mentioned
above. This demonstrates the inherent safety of the present
approach: the fully-automated analysis fails if changes to the
code base invalidate previous assumptions.

B. Loop Bounds in the Mälardalen Suite

We use the Mälardalen WCET benchmark suite [GBEL10]
to further characterise the effectiveness of our approach. As
in our previous such evaluation [BH13], we compile the C
sources for the ARMv6 architecture, with gcc (4.5.1) and the
-O2 optimisation setting, and omit benchmarks using floating
point arithmetic. Floating point arithmetic is not presently
supported by our C semantics nor the Cambridge processor
model (see Section IV-D).

The results are listed in Table II. We must also omit a
number of tests which we attempted in our previous work.
The current design depends on the C parser and TV toolset to
handle both the C and binary resulting from each test problem.
We skipped some tests which employed the goto statement,
took references to local variables, or made extensive use of
side-effecting operators such as <<=, *p++, none of which are
in our verification C subset. We also skipped some tests which
use certain kinds of recursion or nested loops that our TV
toolset does not yet handle. The TV toolset also rejects some
use of padding in memory, but this was not an issue for the
remaining benchmarks. Finally, we skip the ndes test, which
exposes an issue in the decompiler’s stack analysis causing it
not to terminate.

This highlights the tradeoff inherent in our approach. The
TV apparatus is clearly worth making use of, if we assume that
it has already been successfully applied to our target program.
Likewise if there is a proof document, we should be making
use of the facts in it. The more tools we depend on, however,
the more constraints we put on the target program for all the
tools to succeed. The seL4 kernel was designed with the source
verification in mind, and only needs slight adaptations for the
TV process.

TABLE II. MÄLARDALEN LOOP BOUNDS

Benchmark Loops Bounds Failures
BS 1 1 0
BSORT100 2 1 1
COVER 3 3 0
FDCT 2 2 0
FIBCALL 1 1 0
JFDCTINT 2 2 0
STATEMATE 1 0 1

We discovered an interesting anomaly with the “bs” and
“bsort100” benchmarks. By default the tool discovers loops
with a bound of zero, which defies common sense. Restricting
the use of the calling context or information from the C level
results in the correct bound, for “bs”, and a search failure for
“bsort100”. Further investigation reveals that the main function
in the two benchmarks does not have a return statement,

despite having return type int. Reaching the end of a non-
void function is invalid C and the C parser forbids it. The
WCET analysis makes use of exactly the restrictions that the C
parser checks, and so, since this failure occurs unconditionally
whenever main is entered, the system decides that main must
be unreachable.

We could take additional care to avoid making use of C
parser restrictions which the programmer knowingly ignored.
Since our tool is designed for a case where the checks in the C
model are proven true, we are confident that we can use them
without further analysis. Compilers must be more cautious, as
even confident programmers misunderstand the C standard, as
Dietz et al. [DLRA12] have convincingly shown. We think
this is a strong argument for the merits of pairing WCET and
TV analysis with a source-level proof of safety (e.g. through
model checking), as no safety-critical code should depend on
invalid language constructs.

C. Eliminating infeasible paths

We evaluate infeasible path elimination on two use cases of
seL4 as we did previously [BSC+11]: open and closed systems.
In the open system scenario, all kernel operations are allowed.
In the closed system, user tasks are never given capabilities that
allow creation, deletion or recycling of kernel objects (such as
address spaces or thread-control blocks) once the system is
initialised.

The closed system forbids some expensive operations
which otherwise dominate the WCET, which better exercises
the trace refutation. In our previous work we made some
address-space operations preemptible. In this work we do not
make such kernel modifications, which unfortunately means
we must forbid these operations in addition to those forbidden
before. This means our current “closed” system is limited to
static address space layouts. In future we will improve on this
restriction.

We also forbid three particular operations for cancelling
message sends which have no satisfactory WCET in the
currently verified version of seL4. In our previous work we
made these operations preemptible, however these changes
adjust a number of function signatures and are still waiting
to be verified. We hope to address this issue in the immediate
future. For the time being we measure the open system as
though these changes had already been included.

TABLE III. OPEN SYSTEM REFUTATIONS AND WCET

# Estimated WCET % diff
Iteration refutations (in thousands of cycles) against base case

Base Case 0 7,894
1 57 7,411 -6.12%
2 82 7,307 -7.44%
... ... ... ...
9 120 7,306 -7.45%

In both cases, the automated process iteratively identifies
the worst-case execution trace and eliminates paths within it,
until no refutable paths are found. In both scenarios, a large
number of infeasible paths are found. In the open-system case,
they barely matter, as shown in Table III: this case is dominated
by a memzero loop used to initialise a large object. Our
previous fork of seL4 [BSC+11] made this step preemptible,



and in future work we plan to merge more of these changes
into the verified kernel and hopefully see a lower bound here.

The closed case has no such expensive operations. As Fig-
ure 4 shows, infeasible path elimination reduces the estimated
WCET from 375 (thousand cycles) to 193, or 48.5% with 239
refutations. Each iteration refutes a significant number of paths,
until the twelfth, which finds none, terminating the process.
However, as Figure 4 shows, only the first two iterations have
a significant effect on the WCET bound.
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WCET bound (closed system).

D. Limitations

We build on a number of existing tools and inherit their
limitations. For instance, the C-to-Isabelle parser does not
support floating point arithmetic, string constants, or taking
the address of a local variable. It also requires the program to
be single-threaded and to be written in a clean C which strictly
conforms to some aspects of the standard. The HOL4 ARM
model does not specify floating point or division operations
(which are optional on the relevant ARM cores). The TV
framework does not discover loop relations for nested loops,
and handles only some irreducible loops, though it handles
loops with multiple exit conditions.

None of these affect the analysis of seL4, which is unsur-
prising, as the parser has been co-developed with seL4, and
the HOL4 ARM model was enhanced to satisfy the needs
of the seL4 translation validation. Hence, the kernel code
satisfies all those limitations. Furthermore, nested loops can be
accommodated if the inner loop is encapsulated into a function.

While we use the proof apparatus from the TV framework
extensively, we make relatively little use of the TV proofs
themselves; we only use the loop relations for a few challeng-
ing loop bound problems. In principle, we could use the TV
relation to map every candidate binary execution trace back
into a trace through the C program, and therefore convert
any path constraint we could discover in the C program
into a binary equivalent. Such an approach would be both
theoretically and practically attractive. It would allow us to
always derive a binary control flow analysis as strong as the
best available source analysis.

There are two reasons we did not pursue this. Firstly
it would be computationally very expensive to map every
binary branch back to its C counterpart (or lack thereof) rather

than just the looping conditions. Secondly, seL4 (like any OS
kernel) contains a small number of hardware-control routines
that use in-line assembly. As these are not C, our C-to-Isabelle
parser cannot understand them. This creates number of “blind
spots” for the TV framework – functions which must simply be
assumed to match the semantics of the relevant binary routine.
When the compiler is permitted to inline aggressively (we use
gcc -O2), it frequently moves these simple routines upwards
into the loops they are called from. This means we depend on
binary-only loop bound analysis to operate within these blind
spots.

E. Performance

The loop bound analysis can be run on all loops in the
seL4 binary in 119 minutes 11 seconds, on an Intel i7-4790
based desktop machine running at 3.60GHz with 32 GiB RAM.
Each iteration of the infeasible path search takes 2-3 hours for
the first six iterations and less than 1 hour each afterwards,
with a total time to run all the cycles of around 19 hours.
This implementation is currently single threaded, and could
be easily parallelised. There is certainly also room for other
optimisation, especially in the refutation phase. Both analysis
phases consider only a small number of functions at one time,
however, so they should scale linearly to codebases with many
more functions.

The seL4 kernel consists of about 9,000 source lines of
code (SLOC) and compiles to about 14,000 instructions in
about 2,100 basic blocks. After virtual inlining by Chronos,
this increases to an ILP problem for about 650,000 basic
blocks. Hypothetically the ILP solving phase, which is cur-
rently the cheapest phase, would eventually dominate the
analysis. The analysis is helped by the small average size of
functions in seL4. If instead we analysed a codebase with a
few very large functions, we would produce much larger SMT
problems. Our experience with the Mälardalen benchmarks is
that the size (number of statements) of the largest loops has a
heavy impact on the TV apparatus.

V. CONCLUSIONS

We propose a WCET analysis approach supported by the
functional correctness apparatus used on the same program.
In particular we build on a C source semantics used for hand
verification and a translation validation framework used for
checking the translation of the C source to the binary. Together
these give us a convenient environment for reasoning about
binary execution, adding source level annotations if necessary,
without trusting either the compiler or the annotation author.

We apply this approach to the seL4 microkernel, and
determine (tight) bounds on all of the loops in its binary. The
majority of bounds are found without providing any additional
information, while a few required adding extra assertions
(which needed to be proved) at the C level. After this one-
off manual interference, all remaining loop bounds are found
and proved. All the discovered loop bounds seem to be tight.

Similarly, the tool chain (provably) refutes infeasible paths.
While in this case there is no guarantee that all such paths have
been refuted, the result is comparable to earlier work (which
identified infeasible paths by manual inspection). The iden-
tified worst-case execution trace that remains after refutation



concludes seems possible, though this is laborious to confirm
by hand.

We have also shown that the approach works, in principle,
for other real-time code that has not been formally verified,
although restrictions in our present toolchain limit the class of
programs that can be analysed. Obviously, without being able
to leverage formal verification artefacts, the analysis is less
complete than in the case of seL4. However, the support for
manual code annotations to specify assertions can compensate
for this, especially where such assertions have been proved by
other means, e.g. model checking.

In summary, we believe that the WCET analysis framework
based on our translation-validation toolchain constitutes a
promising approach for establishing WCET bounds on high-
assurance software. In the specific case of the seL4 microker-
nel, it constitutes a big step towards reaching a similar level of
confidence in its timeliness as already exists in its functional
correctness.

AVAILABILITY

The present analysis extends, and is integrated with, the ex-
isting TV framework. The complete framework is available as
open source (see https://ssrg.nicta.com.au/software/TS/).
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Refinement-based CFG reconstruction from unstructured pro-
grams. In Int. Conf. Verification, Model Checking & Abstract
Interpretation, pages 54–69, 2011.

[BLH14] Bernard Blackham, Mark Liffiton, and Gernot Heiser. Trickle:
automated infeasible path detection using all minimal unsatis-
fiable subsets. In RTAS, pages 169–178, Berlin, Germany, Apr
2014.

[BSC+11] Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik
Roychoudhury, and Gernot Heiser. Timing analysis of a
protected operating system kernel. In RTSS, pages 339–348,
Vienna, Austria, Nov 2011.

[BSH12] Bernard Blackham, Yao Shi, and Gernot Heiser. Improving
interrupt response time in a verifiable protected microkernel. In
EuroSys, pages 323–336, Bern, Switzerland, Apr 2012.

[CM07] Christoph Cullmann and Florian Martin. Data-flow based
detection of loop bounds. In 7th WS Worst-Case Execution-
Time Analysis, 2007.

[DLRA12] Will Dietz, Peng Li, John Regehr, and Vikram Adve. Under-
standing integer overflow in C/C++. In Proceedings of the 34th
International Conference on Software Engineering, ICSE ’12,
pages 760–770, Piscataway, NJ, USA, 2012.

[DVH66] Jack B. Dennis and Earl C. Van Horn. Programming semantics
for multiprogrammed computations. CACM, 9:143–155, 1966.

[EH13] Kevin Elphinstone and Gernot Heiser. From L3 to seL4 – what
have we learnt in 20 years of L4 microkernels? In SOSP, pages
133–150, Farmington, PA, USA, Nov 2013.

[FHL+01] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach,
Florian Martin, Michael Schmidt, Henrik Theiling, Stephan
Thesing, and Reinhard Wilhelm. Reliable and precise WCET
determination for a real-life processor. In EMSOFT, pages 469–
485, London, UK, 2001.

[FM10] Anthony Fox and Magnus Myreen. A trustworthy monadic
formalization of the ARMv7 instruction set architecture. In 1st
ITP, volume 6172 of LNCS, pages 243–258, Edinburgh, UK,
Jul 2010.

[GBEL10] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn
Lisper. The Mälardalen WCET benchmarks – past, present and
future. In 10th WS Worst-Case Execution-Time Analysis, pages
137–147, Brussels, BE, Jul 2010.

[GESL06] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and
Björn Lisper. Automatic derivation of loop bounds and infeasi-
ble paths for WCET analysis using abstract execution. In RTSS,
pages 57–66, Washington, DC, US, 2006.

[HH08] Andr Hergenhan and Gernot Heiser. Operating systems tech-
nology for converged ECUs. In 6th Emb. Security in Cars Conf.
(escar), page 3 pages, Hamburg, Germany, Nov 2008.

[ISO11] ISO. ISO26262: Road Vehicles – Functional Safety, Nov 2011.
[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andron-

ick, et al. seL4: Formal verification of an OS kernel. In SOSP,
pages 207–220, Big Sky, MT, US, Oct 2009.
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