
Magnetite:

Rust-Based OS Services for seL4

Juliana Furgala
Secure and Resilient Systems and Technologies Group

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions 

or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force. © 2023 Massachusetts Institute of Technology. Delivered to the U.S. Government with 

Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as 

detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.



seL4 Summit: Magnetite - 2

JF - 09/23

Embedded Systems are Everywhere

Satellite Communication

Terminals

UAVs

USVs

Missiles

Sensors

Satellites

Small Sats

Power Systems 

and Utilities

Security 

Systems

UAV = Unmanned Aerial Vehicle

USV = Unmanned Submersible Vehicle



seL4 Summit: Magnetite - 3

JF - 09/23

Trends in Security of Embedded Systems



seL4 Summit: Magnetite - 4

JF - 09/23

A Typical Embedded Device

Onboard Computer

Operating System (e.g., Magnetite)

Payload/Mission Software

Platform Support (e.g., drivers, HW configuration)

Data Bus

Hardware (HW)

Firmware

Mission Apps (SW)

• Supplied by specific 

HW vendors

• Opaque binary

• Difficult to audit and 

monitor

• Implicitly trusted

• Usually sourced from 3rd party

• Very large, extremely complex, difficult to test

• Highly privileged

• Responsible for control of the compute system

• Able to manipulate other parts of the system

• Supplied by bus vendor

• Trusted, safety-critical

• Supplied by bus vendor and/or HW vendor

• Highly privileged, difficult to test

Operating System

Platform Support Software

System Control Software

• Supplied by mission owner/contractor

• Trusted, but not safety-critical

Payload/Mission Software

System Control Software

Embedded Firmware

OS & Vendor SW

Power to Affect 

System

Assurance and 

Auditability

A trustworthy operating system is essential for security



seL4 Summit: Magnetite - 5

JF - 09/23

Size and complexity mean a high risk 
of bugs

– Millions of lines of code

– Hundreds of changes a day

– Huge amounts of functionality

Operating System Challenge: Incorrectness

Low-level languages means high risk 
of bugs

– Low-level languages without a runtime 

required for OS development

– Microsoft reports that 70% of its disclosed 

vulnerabilities are related to memory 

safety issues in C/C++

– Similar issues in other operating systems, 

like VxWorks
Operating 

System

Lines of 

Code

Number of 

Contributors

Average Daily 

Commit Rate

FreeRTOS 5,000,000 60 8

RTEMS 2,000,000 200 7

Real Time Linux 26,000,000 20,000 159



seL4 Summit: Magnetite - 6

JF - 09/23

Monolithic design allows easy privilege 
escalation

– Most operating systems are monolithic

– All components can interact with all other 
components

– No real private data or functionality

– One point of compromise impacts entire 
operating system

Operating System Challenge: Handling Compromise

Operating system components must be 
trusted forever

– Operating system maintains access to 
memory and permissions of applications

– Able to reach into applications and 
arbitrarily read/write

– Operating system can always 
compromise applications

Scheduler
Memory 

Management

Channels

File SystemTime

Ethernet

Driver

UART 

Driver

Temp

Sensor 

Driver

Process 1

Process 2

Mem Pages

Permissions

Mem Pages

Permissions

Process 1

Process List
Mem Mgt

Process 2

Network

Stack



seL4 Summit: Magnetite - 7

JF - 09/23

• Patching

– Fixes known bugs!

• Manual and Automated Testing

– Great for verifying functionality and conformance

• Fuzzing and Static Analysis

– Finds lots of bugs, widely applied in practice

• Formal Methods

– Provides extremely strong guarantees: “formal proofs”

• Microkernels and Compartmentalization

– Reduces privilege escalation in the operating system

Common Responses to Challenges

Merely mitigates the problem, but cannot 

solve it

People are notoriously bad at creating test 

cases for malicious behavior

Incomplete, limited analysis ability, bugs 

are still being discovered

Extremely labor intensive and size limited

Difficult to retrofit, existing systems are 

experimental, often poor performance



seL4 Summit: Magnetite - 8

JF - 09/23

Magnetite: MIT LL Solution

• A new operating system

• Looks to the field of formal methods for a solid foundation

• Formally verified microkernel (seL4)

– Provides isolation, scheduling, and resources

– Careful design and usage to avoid performance impacts

• Leverage Rust’s language-level static analysis to reduce bugs

– Provides memory safety at the language level 

• Architected specifically for security

– Minimize privilege, separate into components

– Make it easy to reason about data flow

seL4

formally verified 

microkernel

User 

Application

Magnetite Operating System

using Rust

User 

Application



seL4 Summit: Magnetite - 9

JF - 09/23

Outline

• Motivation

• Technical Foundations

• Magnetite Design and Status

• Applications of Magnetite

• Summary



seL4 Summit: Magnetite - 10

JF - 09/23

• Formally verified microkernel

• 30-person years to verify

• ~9KLOC

• Used by DARPA HACMS and AFRL ARES

seL4

0101

101010

1010

Functional 

Correctness

Free From 

Memory Bugs
Binary 

Correctness

Controlled 

Information 

Flow

API

Data 

Integrity

KLOC = thousand lines of code

HACMS = High Assurance Cyber Military Systems

ARES = Agile and Resilient Embedded Systems

Klein, Gerwin, et al. "Comprehensive formal 

verification of an OS microkernel”, 2014



seL4 Summit: Magnetite - 11

JF - 09/23

Other Device 

Drivers

seL4’s Role in an Full-Fledged OS

The design of operating system features is crucially important to system and application security

Processes 

and Threads

Dynamic 

Memory 

Allocation

Program 

Loader

Executable 

Formats

Cross-Process 

Communication

Fault 

Handling

Channels

Timers

Networking

Filesystems

Logging

Time

Applications

System 

Architecture

User Accounts

Synchronization

Primitives

UART 

Drivers

Timer Drivers

Ethernet 

Drivers

Storage 

Drivers

Access Control

API Design

Isolation

Scheduling

User libraries

User 

Interface
Other Device 

Drivers

Other Device 

Drivers

None

Complete

Partial



seL4 Summit: Magnetite - 12

JF - 09/23

• Programming language originally developed by Mozilla

• First new systems language in many years

• Now sponsored by an independent foundation and used by 
Mozilla, Amazon, Google, Microsoft, etc.

• Relies heavily on static analysis

• Features:

Rust

Modern 

Package 

Management

Memory 

Safety as

Default

Interaction 

with Other 

Languages

Bare Metal

Support

C C++
Python

“NSA advises organizations to consider making 

a strategic shift… to a memory safe language 

when possible… Examples of memory safe 

language include… Rust”



seL4 Summit: Magnetite - 13

JF - 09/23

Outline

• Motivation

• Technical Foundations

• Magnetite Design and Status

• Applications of Magnetite

• Summary



seL4 Summit: Magnetite - 14

JF - 09/23

Magnetite Design

Legacy Application

Libmagnetite (C)

seL4

Timer Service

Event Service
Channel 

Service

Synchronization 

Service

Loader

Storage
Untyped 

Manager

Fault 

Handler

Logging 

Service

App 

Thread n

App

Thread 1

New Application A

Libmagnetite (Rust)

App 

Thread n

App 

Thread 1

System

Services

App Library

and Support

POSIX-like

Application

Application’s Escrow 

Process

Root Task

Silo Init

Network 

Service

Ethernet 

Driver

Application’s Escrow 

Process

Silo A Silo N

New Application B

Libmagnetite (Rust)

App 

Thread n

App 

Thread 1

Application’s Escrow 

Process

Event 

Service

Access 

Control
Access Control

Silo Init

Boot Support

Services

Apps

Libraries

Microkernel

Com Channels

App Isolation

…



seL4 Summit: Magnetite - 15

JF - 09/23

Feature: Separate Services

Magnetite’s functionality is separated into multiple processes

• Usually considered a Good Thing for security

– Reduced privilege escalation and compromise of unrelated functionality

• Challenges

– Tends to result in complex communication patterns, overhead

– Increase in message parsing, which is bug prone

• Solutions

– Separate each type of functionality into its own service

– Use auto-generated parsing code

Sync 

Service
Timer 

Service

Access 

Control

Device 

Driver 1

Channel 

Service

…

Memory

Management

Logging

Service

Loader

Event 

Service

Network

Service

Device 

Driver 2



seL4 Summit: Magnetite - 16

JF - 09/23

• Many missions have requirements on bounding data flow between parts of the system

• Magnetite provides “shared-nothing” silos of functionality, with explicit channels

– “Shared-nothing” ensures that data cannot accidentally flow between silos

– Explicit channels allow desired flows, which can be one-sided

– Silos and channels are immutable after boot

Feature: Bounded Data Flow

seL4

Magnetite

User App

Magnetite

User App

Root Task

seL4

Magnetite

User App

Magnetite

User App

after silo set up



seL4 Summit: Magnetite - 17

JF - 09/23

Other Device 

Drivers

Magnetite’s Current Status

Today Magnetite is a mature system with solid basic OS functionality

Processes 

and Threads

Dynamic 

Memory 

Allocation

Program 

Loader

Executable 

Formats

Cross-Process 

Communication

Fault 

Handling

Channels

Timers

Networking

Filesystems

Logging

Time

Applications

System 

Architecture

User Accounts

Synchronization

Primitives

UART 

Drivers

Timer Drivers

Ethernet 

Drivers

Storage 

Drivers

Access Control

API Design

Isolation

Scheduling

User libraries

User 

Interface
Other Device 

Drivers

Other Device 

Drivers

Supported platforms:

– ARMv7a

– Xilinx ZC702 and TI DM3730

– Other platforms possible (ARMv8, RISC-V)

Supported languages:

– Rust

– C/C++

None

Complete

Partial

Operating 

System

Source Lines of 

Code (SLoC)

Magnetite 113,062

Real Time Linux 14,964,907



seL4 Summit: Magnetite - 18

JF - 09/23

Comparing Current Performance of Magnetite Against 
Common Alternative

Benchmarked on a Xilinx ZC702

Against Linux 5.4 with the 
realtime patch

Benchmark
Real Time 

Linux
Magnetite

Locking a Contended Mutex 15,844 15,574

Timer Latency (POSIX) 20,666 12,202

Timer Latency (timerfd) 6,494 12,202

Channel Latency 9,439 18,367

Average Case 

Performance (CPU Cycles)

Real Time 

Linux
Magnetite

30,570 17,394

33,118 13,907

14,806 13,907

22,671 20,038

Worst Case 

Performance (CPU Cycles)

Magnetite has a clear advantage over Linux for worst case performance,

which is critical for embedded systems

Lower is Better Lower is Better



seL4 Summit: Magnetite - 19

JF - 09/23

Outline

• Motivation

• Technical Foundations

• Magnetite Design and Status

• Applications of Magnetite

• Summary



seL4 Summit: Magnetite - 20

JF - 09/23

Use Cases

Magnetite is very relevant for high-criticality embedded devices

• Especially where:

– Strong requirements on information flow exist

– Isolation of components is critical

– Performance is a requirement

• Possible Applications:

– UxVs

– Critical infrastructure

– Hypervisors

– Other high-criticality, embedded systems



seL4 Summit: Magnetite - 21

JF - 09/23

Summary

• MIT LL developed a novel operating system called Magnetite

– Founded on formal methods and static analysis

– Separates functionality into multiple processes to avoid impact of compromise

– Enables control of information flow in a system

• Magnetite is a mature system

– Demonstrates the possibilities of seL4 as the foundation for a secure OS

– Continuing to mature through further technical development



seL4 Summit: Magnetite - 22

JF - 09/23

Contact Information

Juliana Furgala
Juliana.Furgala@ll.mit.edu

MIT Lincoln Laboratory


	Slide 1: Magnetite: Rust-Based OS Services for seL4
	Slide 2: Embedded Systems are Everywhere
	Slide 3: Trends in Security of Embedded Systems
	Slide 4: A Typical Embedded Device
	Slide 5: Operating System Challenge: Incorrectness
	Slide 6: Operating System Challenge: Handling Compromise
	Slide 7: Common Responses to Challenges
	Slide 8: Magnetite: MIT LL Solution
	Slide 9: Outline
	Slide 10: seL4
	Slide 11: seL4’s Role in an Full-Fledged OS
	Slide 12: Rust
	Slide 13: Outline
	Slide 14: Magnetite Design
	Slide 15: Feature: Separate Services
	Slide 16: Feature: Bounded Data Flow
	Slide 17: Magnetite’s Current Status
	Slide 18: Comparing Current Performance of Magnetite Against Common Alternative
	Slide 19: Outline
	Slide 20: Use Cases
	Slide 21: Summary
	Slide 22: Contact Information

