‘(AN

Abd

Piw Horizon
ﬂ‘é‘ Robotics

)
§° SPALEMIT

. .
‘e s

\
)

A

N
- 1
LR
e TR T T
g \\\', \ \ t

%\ "-":‘g\."‘:"‘-\d‘! . "s by 5

L

i
Agenda

* About Xcalibyte

 |SO 26262 ASIL-D and MISRA

* MISRA and Verification Conflict

* seL4 MISRA Compliance progress

Company Confidential: Please do not distribute.

— —=
About Xcalibyte - Hardcore deep te S

» Specialised Compiler for RISC-V ONLY

 Original MIPS/SGI/HP and Intel Itanium compiler
team

* Open source project open64 code based | =
« Compatible with Clang/Gcc/Llvm ‘ = sanunl

« Specialised for RISC-V Autonomous Driving

* selL4 micro-kernel for ISO 26262 ASIL - D
« Static analyser for ISO 26262 ASIL-D

4 SRE
SNFwly B

Company Confidential: Please do not distribute.

150 26262 ASIL-D and MISRA

» |SO-26262 ASIL-D certified requirements

IS

Table 6 — Design principles for software unit design and implementation Table 1 — Topics to be covered by modelling and coding guidelines

ASIL
Principle . ASIL
A|lB|c]|oD Topics A|l B | c]| oD
la |Oneentry and one exit point in subprograms and functionsa ++ ++ ++ .- -
. - - - - - la |Enforcement of low complexity? ++ +t s ++
1b [No dynamic objects or variables, or else online test during their creation2 + ++ ++ ++
i . 1b |Use of language subsetsb ++ + s i
1c |Initialization of variables ++ ++ ++ .- -
1d |No multiple use of variable namesa ++ ++ ++ ++ lc_|Enforcement of strong typing* i = s §ob
le |Avoid global variables or else justify their usage? + + ++ ++ 1d |Use of defensive implementation techniquesd ¥ ok ++ Hr
1f |Restricted use of pointersa + -+ -+ o le [Use of well-trusted design principlese . + ++ ++
1g [No implicit type conversionsa ¥ 4 5 ++ 1f |Use of unambiguous graphical representation + ++ s i
1h |No hidden data flow or control flow . ++ s s 1g |Use of style guides + + i i
1i |No unconditional jumpsa ++ | o+ | o+ | 4+ 1h |Use of naming conventions ++ ++ ++ ++
1j |Norecursions i + ++ ++ 1i |Concurrency aspectsf + + + +
4(‘1 l]’rinciplcs 1a, 1b, 1d, 1e, 1f, 1g and 1i may not be applicable for graphical modelling notations used in model-based An appropriate compromise of this topic with other requirements of this document may be required.
evelopment. b ST SN S

NOTE For the C language, MISRA C (see Reference [3]) covers many of the principles listed in Table 6.

1SO 26262-6:2018(E)

Company Confidential: Please do not distribute.

i

S0 26262 ASIL-D and MISR

ISO 26262

MISRA C rule

Coverage

I1ISO 26262

MISRA C rule

Coverage

One entry and one exit point in
subprograms and functions

15.5

A function should have a single point of
exit at the end

3

No dynamic objects or variables,
or else online test during their
creation

Only directive

9

Initialization of variables 9.1 The value of an object with automatic
storage duration shall not be read before
it has been set ‘
9.3 Arrays shall not be partially initialized
9.4 An element of an object shall not be
initialized more than once
No multiple use of variable 5.4 Macro identifiers shall be distinct
fames 55 Identifiers shall be distinct from macro Q
names
5.7 A tag name shall be a unique identifier

Avoid global variables or else
justify their usage

Restricted use of pointers

18.1

A pointer resulting from arithmetic on a pointer
operand shall address an element of the same
array as that pointer operand

18.2

Subtraction between pointers shall not be
applied to pointers that address elements of
the same array

18.3

The relational operators >, >=, < and <= shall
not be applied to objects of pointer type except
where they point into the same object

The restrict type qualifier shall not be used

Conversions shall not be performed between a
pointer to an incomplete type and any other
type

1.3

A cast shall not be performed between a
pointer to object type and a pointer to a
different object type

1.4

A conversion should not be performed
between a pointer to object and an integer type

1.5

A conversion should not be performed from
pointer to void into pointer to object

ISO 26262

No recursions

MISRA C rule

Functions shall not call themselves either
directly or indirectly

Coverage

e
S0 26262 ASIL-D and MISRA

6.2 Guideline categories

"nou

Every MISRA C guideline is given a single category of “mandatory”, “required” or “advisory”, whose
meanings are described below. Beyond this basic classification the document does not give, nor
intend to imply, any grading of importance of each of the guidelines. All required guidelines, whether
rules or directives, should be considered to be of equal importance, as should all mandatory and
advisory ones.

6.2.1 Mandatory guidelines

C code which is claimed to conform to this document shall comply with every mandatory guideline —
deviation from mandatory guidelines is not permitted.

Note: if a checking tool produces a diagnostic message, this does not necessarily mean that a guideline
has been violated for the reasons given in Section 6.5.
6.2.2 Required guidelines

C code which is claimed to conform to this document shall comply with every required guideline, with
a formal deviation required, as described in Section 5.4, where this is not the case.

An organization or project may choose to treat any required guideline as if it were mandatory.

6.2.3 Advisory guidelines

These are recommendations. However, the status of “advisory” does not mean that these items can
be ignored, but rather that they should be followed as far as is reasonably practical. Formal deviation
is not necessary for advisory guidelines but, if the formal deviation process is not followed, alternative
arrangements should be made for documenting non-compliances.

An organization or project may choose to treat any advisory guideline as if it were mandatory or

required.

Directives

7.1 The implementation

7.2 Compilation and build

7.3 Requirements traceability
74 Code design

Rules

81 Astandard C environment
8.2 Unused code

83 Comments

8.4 Character sets and lexical conventions
8.5 Identifiers

8.6 Types

8.7 Literals and constants

8.8 Declarations and definitions
8.9 Initialization

810 The essmodel
811 Pointer type conversions
8.12 Expressions

813
8.14
815
8.16
817
8.18
8.19
8.20
8.21

Side effects

Control statement expressions
Control flow

Switch statements

Functions

Pointers and arrays
Overlapping storage
Preprocessing directives
Standard libraries

Resources

MISRA: sel4 (L4V) Qverview

« 2276(1699) Medium&High Risk on Proof Impact [Required+Advisory]
« 1084(952) Medium&High Risk on Proof Impact [Required]

Rule Strength MISRA_ X S) Moc_"_fy Risk Explaination & Example

Rule/Directive (l4v kernel) = (Possbility) id (Full kernel) =]

MISRA C-2012 Rule 5.7 326 *Medium The identifier is reused [2 cases]

MESEAC-2012 Ride 16.3 = "High Thi:—run:ﬁwoa::iic\"r;iyl' Zf::hi-s:gilsss—:i:n?i cases]

MISRA C-2012 Rule 14.3 137 *High Invalid logical judgment [4 cases]

MISRA C-2012 Rule 21.2 78 Medium Reserved identifier or macro name have been declared [1 case]

MISRA C-2012 Rule 16.1 63 High The switch statement is incorrectly formatted [1 case]

MISRA C-2012 Rule 16.6 46 High The switch statement has no more than two switch-clauses [1 case]
Required MISRA C-2012 Rule 21.1 26 Medium #define and #undef has been used on a reserved identifier or reserved n

MISRA C-2012 Rule 12.2 20 High The right operand of the shift operator is greater than the width of the ba

MISRA C-2012 Rule 2.2 10 *High Unused code [1 case]

MISRA C-2012 Rule 17.2 3 High Functions Recursion call themselves [1 case]

MISRA C-2012 Rule 5.3 3 Medium Identifiers in outer scope are hidden by inner Scope identifiers [1 case]

MISRA C-2012 Rule 5.5 3 Medium The identifier is the same name as the macro [1 case]

MISRA C-2012 Rule 5.8 2 Medium The identifier is used by object with external linkage [1 case]

MISRA C-2012 Rule 15.5 591 *High Return is not the last statement in a function [1 case]

MISRA C-2012 Rule 11.4 257 High There are conversions between integers and Pointers [1 case]
Advisory MISRA C-2012 Rule 17.8 100 *High Function parameter have been modified [1 case]

MISRA C-2012 Rule 2.7 64 High There are unused arguments in the function [1 case]

MISRA C-2012 Rule 18.4 61 High Pointers perform +, -, +=, -= operations [1 case]

Company Confidential: Please do not distribute.

MISRA and Proofs Conflict Examples

MISRA C-2012 Rule 15.5 (500+)

 Statement: "Returnis not the last statement”

* Proof Impact: "Control Flow changes"

1909

1910 /* ReadRegisters is a special case: replyFromKernel & setMRs are

1911 * unfolded here, in order to avoid passing the large reply message up

1912 * to the top level in a global (and double-copying). ¥We prevent the

1913 * top-level replyFronKernel_success_empty() from running by setting the

1914 * thread state. Retype does this too.

1915 xf i
1916 exception_t invokeTCB_ReadRegisters(tcb_t *tcb_src, bool_t suspendSource, $
1917 word_t n, word_t arch, bool_t call)

1918 {

1919 word_t 1, j:

1920 exception_t e

1921 tcb_t *thread:

1922 -

1923 thread = NODE_STATE (ksCurThread) ;

1924

1925 if (suspendSource) { SR

1926 suspend(tcb_sxc) ; m
1927 }

1928

1929 e = Arch_performTransfer (arch, tcb_src, NODE_STATE (ksCurThread)): -
1930 if (e '= EXCEPTION_NONE) { oy

(1) Event misra_c 2012 rule 15 5 violation: This return statement is not the final statement in the compound statement that forms the body of the function.

1931 return e
1932 H
1933

MISRA and Proofs Conflict Examples

[51] objecttype.c line 23

20 bool_t Arch_isFrameType(word_t type)
21 {

MISRA C-2012 Rule 16.1/16.3/16.6 (350+) P

(1) Event misra_c_2012_rule_16_3_violation: This switch clause does not end with an unconditional break statement.

n oy . 23 case seL4 ARM SmallPageObject:
« Statement: "An unconditional break statement shall 2 .
25 case seL4_ ARM LargePageObject:
terminate every switch-clause." 2
y . 27 case seL4 ARM SectionObject:
28 return true;
29 case seL4_ ARM SuperSectionObject:
N n 30 return true;
* Proof Impact: "Control Flow changes n fcknies
32 return false;
33 }
34 }
”ﬂ” vspace.c line |2645 [#]] syscall.c line 481
472 static void handleReply(void)
473
(1) Event misra_c_2012 rule_16_3 violation: This switch clause does not end with an unconditional break statement. 474 g cte t *callerSlot;
475 cap_t callerCap;
2645 case cap_asid_pool_cap: { 476
2646 cap_t pdCap: 477 callerSlot = TCB_PTR_CTE_PTR(NODE_STATE(ksCurThread), tcbCaller);
2647 cte_t *pdCapSlot; 478 callerCap = callerSlot->cap;
2648 asid_pool_t *pool: 479
2649 word_t i 480 switch (cap_get_capType(callerCap)) {
2650 asid_t asid:
2651 (1) Event misra_c_2012_rule_16_3_violation: This switch clause does not end with an unconditional break statement.
2652 if (unlikely(invLabel '= ARMASIDPoolAssign)) {
2653 userError ("ASIDPool: Illegal operation.”):) 481 case cap_reply cap: {
2654 current_syscall_error.type = selL4_IllegalOperation: 482 tchb t *caller;
2655 483 -
2656 return EXCEPTION_SYSCALL_ERROR: 484 if (cap_reply cap_get_capReplyMaster(callerCap)) {
2657 } 485 break;
2658 486 }
2659 if (unlikely(excaps. excaprefs(0] == NULL)) { 487 caller = TCB_PTR(cap_reply cap_get_capTCBPtr(callerCap));
2660 userError (“ASIDPoolAssign: Truncated message.”): 488 /* Haskell error:
2661 current_syscall_error.type = seld_Truncatedilessage: 489 * "handleReply: caller must not be the current thread" */ ~
2662 490 assert(caller != NODE_STATE(ksCurThread));
2663 return EXCEPTION_SYSCALL_ERROR: 491 doReplyTransfer (NODE_STATE (ksCurThread), caller, callerSlot,
2664 } 492 cap_reply cap_get_capReplyCanGrant(callerCap));
2665 493 return; an
2666 pdCapSlot = excaps. excaprefs[0]: 494 } R
2667 pdCap = pdCapSlot—>cap: 495
2668 496 case cap_null_cap:
2669 if (unlikely(497 userError("Attempted reply operation when no reply cap present.");
2670 cap_get_capType (pdCap) !'= cap_page_directory_cap || 498 return;
2671 cap_page_directory_cap_get_capPDIsMapped(pdCap))) { 499
2672 userError ("ASIDPoolAssign: Invalid page directory cap.”): | 500 default:
2673 current_syscall_error.type = selLd_InvalidCapability. 501 break;
2674 current_syscall_error. invalidCapNumber = 1: 502 }
‘ 2675 503
2676 return EXCEPTION_SYSCALL_ERROR: 504 fail("handleReply: invalid caller cap");
2677 } 505 }

V< . i J———

i
Way of Fixing Conflict Example

MlSRA‘C RUle 57 A tag name Sha” be d Unique Change the structure name with a‘'_s’ suffix. In that, we
identifier also need to change

* Change the problematic variable name ‘tcb’ to some other

H] !] . l; H

(1) Event misra_c_2012_rule_5_7_violation: Identifier "tcb" is already used to represent a type. name. Like ‘tcbPtr' for the CompleteS|gnaI mentioned

Also see events: [type declaration] a bove .

252 void completeSignal(notification_t *ntfnPtr,

253 {

254 word_t badge;

255

256 if (likely(tcb && notification_ptr get_state(ntfnPtr) == NtfnState_ Active)) { *ﬁ
257 badge = notification_ptr_ get ntfnMsgldentifier(ntfnPtr); ;
258 setRegister(tcb, badgeRegister, badge); e
259 notification ptr_set_state(ntfnPtr, NtfnState_Idle); , *f
260 #ifdef CONFIG_KERNEL_MCS

261 maybeDonateSchedContext(tcb, ntfnPtr); &

262 #endif -

neD Al) e r

(2) Event type_declaration: Declaring a type with identifier "tcb".

Also see events: [misra ¢ 2012 rule 5 7 violation]

246 l struct tcb { - VA
247 ecific tcb state (including context)*/

248 arch_tcb_t tcbArch;

249

250 /* Thread state, 3 words */

251 thread state_t tcbState;

252

253 /* Notification that this TCB is bound to. If this is set, when this TCB waits on .

254 * any sync endpoint, it may receive a signal from a Notification object. b.‘ -

255 * 1 word*/

256 notification_t *tcbBoundNotification;

287

i / il

i
MISRA: seL4 (L4V) Compliance Progress

Status: NEW

Date aarch32 stream aarch64 stream riscv stream Total

Origin 7644 10217 6681 24542
19-Apr 4200
20-Apr 1483 2717 1942 3582
21-Apr 931 1839 1387 2264
22-Apr 752 992 735 1280
26-Apr 173 194 168 264
27-Apr 58 78 54 97
28-Apr 16 31 25 43
30-Apr 5 9 3 9

Company Confidential: Please do not distribute.

.

Xcalibyte help you deploying sel4

Company Confidential: Please do not distribute.

Faster, Even Safer, and Better seL 4
By Xcalibyte

Xcalscan

XcalCompile

Faster RISC-V version seL4
By XcalCompile
Optimise Code for RISC-V SoC
GCC/Clang Compatible

ISO 26262 ASIL - D/MISRAC

Compliance by XcalScan
« Cause Analysis
« Code/Proof fixings

rcaliby|

’ \.....mmnm' L

b

U .nm‘

St 7
-F,
=

\

=y
| s
B
PRSI
PR
e
R
—
e
P
p—
R
B
——
——
—
—
—
—
—
—
—
—
—
—
—
—
—

5 }
-

